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Abstract. The eight-component relativistic wave equation for spin-1
2 particles derived in the

preceding paper is studied from a mathematical viewpoint. It is shown that it is relativistically
covariant, albeit not manifestly so. It has an enlarged solution space when compared to the
Dirac equation. A derivation of the equation in an arbitrary gamma matrix representation is
presented. Kronecker products are used to display the analogy between the eight-component
equation and the two-component spin-0 equation. The linearization procedure used to obtain
the eight-component equation from the second-order spin-1

2 equation is found to have a natural
mathematical validation in the study of indefinite inner product spaces. The (relativistic) quantum
mechanical formalism for the eight-component equation is constructed. This features the use
of an indefinite inner product and some results are presented to show how the usual quantum
mechanical formalism is generalized to account for this. The reason for the decoupling of the
equation into two four-component equations in the Weyl representation of the gamma matrices
is given. It is shown that only one of the decoupled parts has to be solved for any problem of a
single particle coupled to an external electromagnetic field. Comments are made on the solution
of the hydrogen atom presented in the preceding paper.

1. Introduction

This is the second of a series of papers concerning the development of a spin-1
2 relativistic

wave equation which involves the use of an indefinite inner product in the description of
its solution space. In the first paper [1] the equation, which has eight components and is in
Hamiltonian form, was derived. It was used to produce the relativistic bound-state energy
eigenvalue spectra and wavefunctions for hydrogenic atoms to show that it could be used
for a single particle minimally coupled to a classical external electromagnetic field.

This paper seeks to establish, from a mathematical viewpoint, the validity of the
equation in relativistic quantum mechanics.

Historically, the Dirac equation [2] was constructed in order to incorporate the effects
of special relativity into the formalism of non-relativistic quantum mechanics. A relativistic
wave equation in Hamiltonian form was sought which retained the probability interpretation
of quantum mechanics. The Dirac equation proved to be such an equation although the
negative energy solutions required further interpretation. The relativistic nature of the
Dirac equation can easily be seen by considering the representation theory of the Lorentz
group. The probability interpretation is one result of the mathematical formalism of quantum
mechanics, based upon the use of a Hilbert space.

In this paper, the eight-component equation is discussed using elements of the above
mentioned mathematics. It will be shown that, despite its appearance, the equation is
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relativistically covariant. It requires the use of an indefinite inner product, which is one
of two major distinguishing factors from the formalism associated with the Dirac equation.
The other is that the equation has an enlarged solution space, the dimension of which is
twice that of the Dirac solution space. It is found that there are two advantages in using
the equation as opposed to the second-order spin-1

2 equation. These are its Hamiltonian
form, which allows the possibility of developing a quantum mechanical formalism, and a
very natural interpretation using considerations from the theory of indefinite inner product
spaces. A number of results are given which provide the basis for the required quantum
mechanical formalism associated to the equation.

In section 2 a brief summary of the results of the preceding paper is given. The
eight-component equation is hereafter referred to as the FV1

2 equation due to its similar
form to the two-component spin-0 relativistic wave equation which we call the Feshbach–
Villars equation [3]. The FV12 equation is obtained from a spin-1

2 relativistic wave equation
containing second-order derivatives in both time and space [4] (which we refer to as the
KG 1

2 equation due to its similar form to the spin-0 Klein–Gordon equation) by linearizing
only the time derivative. There is a one-to-one correspondence between solutions of the
FV 1

2 and KG1
2 equations and the equations themselves are equivalent. Hence, by studying

the KG1
2 equation one can obtain direct information about the FV1

2 equation. The KG1
2 and

Dirac equations are in section 3 derived using spinors and their product representations from
which their relativistic covariance is easily seen. Thus the FV1

2 equation is also covariant
if not manifestly so. The use of spinor quantities illustrates the mathematical origins of the
Dirac and KG1

2 equations.
In section 4 it is shown that the solution space of the KG1

2 equation is twice the
dimension of the solution space of the Dirac equation.

A comparison of the FV12 equation with the Feshbach–Villars equation (hereafter
referred to as the FV0 equation) is given in section 5, followed by a derivation of the FV1

2
equation in an arbitrary gamma matrix representation. The linearization procedure used to
derive the FV1

2 equation is then justified in section 6 from a consideration of conserved
currents for Klein–Gordon type equations in terms of inner product spaces. It is shown that
they can be written most simply and transparently by linearizing only the time derivative
in the Klein–Gordon type equations. This provides a rationale for the process beyond
that in [3], which is applicable to both the spin-0 and spin-1

2 cases. The FV12 equation
is written using Kronecker products, which simplifies its interpretation and preserves the
gamma matrix algebra, which is present in any relativistic spin-1

2 equation, in a manifest
form.

A useful result of the FV12 equation is that it decouples into two separate equations
in the Weyl representation of the gamma matrices. That this should happen is shown in
section 7 using the theory of projectors. A method is given in which only one of the
decoupled equations needs to be solved for problems of a single particle minimally coupled
to a classical external electromagnetic field and how the full eight-component wavefunctions
can easily be constructed from this.

The theory of indefinite inner product spaces is used in section 8 to construct the
quantum mechanical formalism associated to the FV1

2 equation. The Hamiltonian is
shown to be pseudo-Hermitian and thus plays the same rôle as the ordinary quantum
mechanical Hamiltonian. The definition of the expectation value of an operator as given
in [3] is clarified. The pseudo-unitary transformations in [3] are extended to the spin-1

2
case and Kronecker products used to show that transformations between gamma matrix
representations take, as they must, the usual unitary form.
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In section 9, the indefinite inner product is written in a form which takes advantage of
the decoupling of the FV12 equation.

In the preceding paper the equation was applied to hydrogenic atoms. It was seen that
the bound-state energy eigenvalue spectra obtained are identical to those from the Dirac
equation, but that the wavefunctions differ. In section 10 it is shown that the angular
wavefunctions are identical, retaining the angular momentum classification of states. The
exact relationship between the radial wavefunctions is found. The FV1

2 wavefunctions are
consistent with the literature, suggesting that the solution method given in [1] and section
7 of this paper is correct. These results hold for those bound state solutions constructed so
that 〈9|9〉 = +1. The other solutions will be discussed in conjunction with the physical
interpretation of the enlarged solution space using the indefinite inner product in a later
paper.

Finally, in section 11 some conclusions are presented together with an outline of
forthcoming papers.

2. The FV1
2 equation

In the preceding paper [1] the FV12 equation was derived. The FV0 equation is obtained
from the Klein–Gordon equation (KG0 equation) by linearizing the time derivative. It is in
Hamiltonian form, i∂

∂t
129FV0 = HFV09FV0, with [3]

HFV0 = −D2

2m

(
1 1

−1 −1

)
+ m

(
1 0
0 −1

)
+ eA012 (1)

9FV0 =
(

φ

χ

)
= 1√

2

(
9KG0 + m−1iD09KG0

9KG0 − m−1iD09KG0

)
. (2)

The FV1
2 equation was derived via an analogous linearization of the KG1

2 equation. The
Weyl representation of the gamma matrices was chosen, where the KG1

2 equation decouples
into two two-component equations. Upon linearization two four-component equations were
obtained, these are i∂

∂t
149ξ = Hξ9ξ and i∂

∂t
149η̇ = Hη̇9η̇ with

Hξ =
(

1 1
−1 −1

)
⊗ 1

2m
(−D212 + ieσ · (E + iB)) + m

(
12 0
0 −12

)
+ eA014 (3)

Hη̇ =
(

1 1
−1 −1

)
⊗ 1

2m
(−D212 − ieσ · (E − iB)) + m

(
12 0
0 −12

)
+ eA014. (4)

These two equations combine into an eight-component equation, which is (one form of) the
FV 1

2 equation(
(i ∂

∂t
14 − Hξ) 0

0 (i ∂
∂t

14 − Hη̇)

) (
9ξ

9η̇

)
= 0. (5)

The equation i∂
∂t

149ξ = Hξ9ξ was solved exactly in the presence of a minimally
coupled Coulomb potential to produce the relativistic bound-state energy eigenvalue spectra
and wavefunctions for hydrogenic atoms. The spectra are the same as those obtained using
the Dirac equation, but the wavefunctions deviate slightly due to the fact that a different
Hamiltonian is used.
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3. The KG1
2 and Dirac equations in spinor notation

An important step in the development of the FV1
2 equation is to show that it is indeed

relativistic. Since the FV12 equation is equivalent to the KG12 equation, it suffices
to show the covariance of the KG12 equation. This is most easily done using spinor
representations of the Lorentz Group. The KG1

2 equation is in conventional 4-vector notation
((i 6D)2 − m214)9KG1/2 = 0, whereas the Dirac equation is(i 6D − m14)9D = 0.

These equations will now be derived using quantities constructed from the spinor
irreducible representations of the proper (inhomogeneous) Lorentz group, hereafter referred
to as thePLG. The PLG is defined to contain rotations in three-dimensional space plus
Lorentz boosts. The two spinor irreducible representations (1

2, 0) and (0,12) of the PLG are
two-component quantities and here they are labelledξα andηβ̇ [5]. The spinor equivalent

of a 4-vector is constructed from the product of two separate spinorsξα and2β̇ = (2β)∗,
and is writtenV αβ̇ . Written as a 2× 2 matrix

[V αβ̇ ] =
(

V 00̇ V 01̇

V 10̇ V 11̇

)
= v012 + σ · v (6)

wherevµ = (v0, v) is a covariant 4-vector.Vα̇β is obtained fromV αβ̇ by spatial inversion.
P αβ̇ is used to denote the quantity related to i∂µ by the above prescription. A minimal
coupling to a classical external electromagnetic field is introduced by the replacement

P αβ̇ → 5αβ̇ = P αβ̇ − eAαβ̇ (7)

which is the spinor equivalent of the minimal coupling

∂µ → Dµ = ∂µ + ieAµ. (8)

Consider a first-order partial differential equation acting on the two irreducible representa-
tions ξα andηβ̇

5αβ̇ηβ̇ = mξα (9)

5β̇αξα = mηβ̇. (10)

These are the simplest first-order manifestly covariant equations one can write. If equations
(9) and (10) are combined into a single four-component equation, one obtains the Dirac
equation in the Weyl (also known as the spinor [5] or helicity) representation of the gamma
matrices. Here, the gamma matrices take the form [6]

γ 0 =
(

0 12

12 0

)
γ =

(
0 −σ
σ 0

)
γ5 =

(
12 0
0 −12

)
. (11)

The simplest manifestly covariant second-order equations are

5αβ̇5β̇γ ξγ = m2ξα (12)

5α̇β5βγ̇ ηγ̇ = m2ηα̇. (13)
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There are two separate uncoupled equations, which transform into each other under spatial
inversion. Each equation is a second-order two-component equation. If one wants to use
these equations in relativistic quantum mechanics, (12) and (13) should be combined into one
four-component equation, as then the whole equation will be invariant under spatial inversion
as required for electromagnetic interactions. This combined four-component equation is the
KG 1

2 equation in the Weyl representation of the gamma matrices. Equations (12) and (13)
themselves are identically the equations (14), [1] for9±. The choice ofm2 for the constants
in equations (12) and (13) is justified as for free particles

5αβ̇5β̇γ = P αβ̇Pβ̇γ = −∂µ∂µδα
γ (14)

and one obtains the free particle Klein–Gordon equations for the two-component spinorsξα

andηβ̇ , (∂µ∂µ +m2)12ξ
α = 0 and(∂µ∂µ +m2)12ηβ̇ = 0. Using this notation it can be seen

that while the KG1
2 equation decouples into two equations, it is not possible to construct a

two-component first-order equation due to the fact that5αβ̇ couples the two types of spinor
irreducible representations of thePLG. The decoupling of the KG12 equation occurs only in
the Weyl representation, where9KG1/2 = (ξα, ηβ̇)T .

The use of spinor quantities provides a natural way to derive spin-1
2 relativistic wave

equations of either first or second order with the correct minimal coupling. The covariance
of these equations is automatic and manifest. The method of construction via spinors shows
that the KG1

2 equation can be deriveda priori, rather than only by ‘squaring’ the Dirac
equation. It is also observed that the FV1

2 equation originates, not from the Dirac equation,
but from another, equally mathematically valid, relativistic wave equation. The covariance
of the KG1

2 equation establishes the covariance of the FV1
2 equation. Also, the fact that the

KG 1
2 equation describes spin-1

2 particles means that the FV1
2 equation does likewise.

4. The solution spaces of the KG1
2 and Dirac equations

The Dirac equation in conventional notation is

(i 6D − m14)9 = 0 or i 6D9 = m149. (15)

‘Squaring’ (15) gives

(i 6D)29 = m2149 or ((i 6D)2 − m214)9 = 0 (16)

which is the KG1
2 equation. It can be seen that if one started with equation (15), replaced

m by −m, and then ‘squared’ the equation, that equation (16) is again obtained. LetD± be
the solution spaces of the equations

(i 6D ± m14)9± = 0 (17)

and F be the solution space of equation (16). Some relationships between the solution
spaces of equations (17) and (16) are listed below [7]

D+ ∪ D− ⊂ F (18)

∀9− ∈ D− ∃|9+ ∈ D+ 3 9+ = γ59− (19)

∀9 ∈ F ∃|9+ ∈ D+ ∧ 9− ∈ D− 3 9 = 9− − 9+, 9± = (2m)−1(i 6D ∓ m14)9 (20)

D+ ∩ D− = {0}. (21)
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SinceD+ and D− are disjoint (equation (21)), and the dimension ofD− is equal to the
dimension ofD+ (which follows from equation (19) sinceγ5 is non-singular), thenD−∪D+
has twice the dimension ofD−. Thus, according to equation (18), the solution spaceF
has dimension at least twice that of the Dirac equation solution space. It is exactly twice
because equation (20) shows thatD− ∪ D+ spansF .

The enlarged solution space of the KG1
2 equation when compared to the Dirac equation is

a major distinguishing factor between these equations. The one-to-one correspondence
between solutions of the FV12 and KG1

2 equations shows that the solution space of the FV1
2

equation is twice the dimension of the Dirac equation solution space.
Equation (18) shows that in general, rather than a Dirac solution, a linear combination

of a Dirac and a separate solution is to be considered as a solution of the KG1
2 equation.

Equation (19) shows that there is a one-to-one correspondence between solutions in the
spacesD− and D+. However, equation (21) emphasizes that any solution or linear
combination of solutions inD− is linearly independent to each and every solution inD+.
Finally, equation (20) shows how any solution of the KG1

2 equation can be written as a
linear combination of elements ofD− andD+. The solutions9− and9+ in equation (20)
do not, however, satisfy equation (19).

5. The FV1
2 equation in an arbitrary gamma matrix representation

In the preceding paper, the FV1
2 equation was derived in the Weyl representation of the

gamma matrices. This has the advantage that the FV1
2 equation decouples into two separate

four-component equations in Hamiltonian form, with Hamiltonians given by equations (3)
and (4). The Hamiltonians (3) and (4) differ fromHFV0 (1) in that they each contain
twice as many components asHFV0 and also in that they contain a term representing the
interaction of the spin with the external field. The external electromagnetic field appears
in the well known [5] relativistic combinations(E + iB) and−(E − iB). Under spatial
inversion these complex 3-vectors interchange. These combinations are already manifest in
the second-order equations (14), [1].

The non-relativistic generalization of the spin-0 Schrödinger equation to the spin-1
2 Pauli

equation [8] involves the substitution

D2 → (σ · D)2 = D212 + eσ · B. (22)

The relativistic generalization contains not just the magnetic field, but specific combinations
of the magnetic and electric fields. The wavefunctions that the Hamiltonians (3) and (4)
act on are of similar form to (2) except that each component is multiplied by a two-
component spinor as follows. The two equations (12) and (13) each have a two-component
wavefunction (now) written asξ and η̇ respectively. Combined together, the wavefunction
becomes9KG1/2 = (ξ, η̇)T . In order to obtain the FV12 wavefunction from this four-
component wavefunction, define

9KG1/2 =
(

ξ

η̇

)
= ψ

(
ξ0

η̇0

)
(23)

where ψ is a scalar containing everything in the wavefunction invariant under spatial
inversion.ξ0 andη̇0 each have two components and contain only the parts that transform into
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each other under spatial inversion. Any time dependence of the wavefunction is contained
in ψ as this will not be altered under spatial inversion. Using (23) one can again define

9 =
(

φ

χ

)
= 1√

2

(
ψ + m−1iD0ψ
ψ − m−1iD0ψ

)
. (24)

This definition is analogous to (2). The wavefunctions corresponding to (3) and (4) become
respectively

9ξ =
(

φξ0

χξ0

)
and 9η̇ =

(
φη̇0

χη̇0

)
. (25)

The eight-component wavefunction in equation (5) is simply9FV1/2 = (9 ⊗ ξ0, 9 ⊗ η̇0)
T

and equation (5) itself can be written as

i ∂
∂t

189FV1/2 = HFV1/29FV1/2 HFV1/2 =
(

Hξ 0
0 Hη̇

)
(26)

Hξ = (τ3 + iτ2) ⊗
(

1

2m
(−D212 + ieσ · (E + iB))

)
+ m(τ3 ⊗ 12) + eA0(12 ⊗ 12) (27a)

Hη̇ = (τ3 + iτ2) ⊗
(

1

2m
(−D212 − ieσ · (E − iB))

)
+ m(τ3 ⊗ 12) + eA0(12 ⊗ 12) (27b)

where theτi are the usual Pauli matrices.
The FV1

2 equation will now be derived for an arbitrary gamma matrix representation.
Consider the KG1

2 equation and define9KG1/2 in an arbitrary representation by9KG1/2 =
(α, β)T , where(

α

β

)
= U

(
ξ

η̇

)
(28)

and the gamma matrices in this representation areγ
µ

U = Uγ
µ

WeylU
†. In analogy to

equation (23), define

9KG1/2 =
(

α

β

)
= ψ

(
α0

β0

)
(29)

whereψ is identical to theψ defined by equation (23), as under a unitary transformation of
the gamma matricesψ will remain unchanged.

The wavefunction9FV1/2 in the Weyl representation is given in equation (5). However,
for an arbitrary gamma matrix representation, the wavefunction9FV1/2 = (9⊗α0, 9⊗β0)

T

is not convenient to display the analogous nature of the FV1
2 and FV0 equations. The

purpose of definingψ via equation (23) is to obtain a wavefunction of the form(φ, χ)T

multiplied by a spinor wavefunction, where(φ, χ)T plays as close a rôle as possible to
(φ, χ)T of the FV0 equation. This makes it possible to write the equation, a conserved
current, operators and expectation values in a way analogous to the FV0 equation, and
hence to develop an analogous relativistic quantum mechanics for the FV1

2 equation. We
instead define9 ′

FV1/2 = 9⊗90 where90 = (α0, β0)
T . The linearization procedure involves

rewriting 9KG1/2 = ψ90 (= ψ⊗90 asψ is a single component object) as9 ′
FV1/2 = 9⊗90.
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Note that the bispinor90 remains unchanged by the linearization process.9 ′
FV1/2 satisfies

an eight-component equation i∂
∂t

189
′
FV1/2 = H ′

FV1/29
′
FV1/2, with

H ′
FV1/2 = (τ3 + iτ2) ⊗

(
1

2m

(
−D214 + e

2
σµνFµν

))
+ m(τ3 ⊗ 14) + eA0(12 ⊗ 14). (30)

HFV0 is given here for comparison

HFV0 = (τ3 + iτ2)

(
1

2m
(−D2)

)
+ mτ3 + eA012. (31)

The only changes to the FV12 equation under a unitary transformation of the gamma matrices
are to change theσµν term in the Hamiltonian (30) and the bispinor90 in the wavefunction.
Theσµν term is the only one that couplesα0 andβ0, and in the Weyl representationσµν is
block diagonal which allows separate equations forα0 andβ0 to be written. These separate
equations have four components with wavefunctions9 ⊗ α0 = 9ξ and9 ⊗ β0 = 9η̇. The
analogous nature ofH ′

FV1/2 and HFV0 is clear. Throughout this paper,9FV1/2 and HFV1/2

refer to the wavefunction and Hamiltonian written as in equations (3–5) while9 ′
FV1/2 and

H ′
FV1/2 refer to the wavefunction9 ⊗ 90 and the Hamiltonian given by equation (30).

The KG1
2 equation (16) can be conveniently written as(

(DµDµ + m2)14 + e

2
σµνFµν

)
9KG1/2(x) = 0 (32)

which shows that the spin term is preserved in the Hamiltonian (30).

6. The Feshbach–Villars linearization procedure

The linearization procedure used to obtain the FV1
2 equation in any of its forms from the

KG 1
2 equation is analogous to that used by Feshbach and Villars [3] in the spin-0 case

and for convenience will be referred to as the Feshbach–Villars linearization procedure
regardless of whether it is applied in the spin-1

2 or spin-0 case. It involves the rewriting
of a manifestly covariant, second order in the time derivative equation as a non-manifestly
covariant, first order in the time derivative equation . Why should this be useful? To answer
this question, some elements of the formalism of non-relativistic quantum mechanics are
first reviewed.

In non-relativistic quantum mechanics a system is represented by a vector|ψ〉 ∈ H,
whereH is a Hilbert space [9]. In the position representation, the wavefunctionψ(x) is
a complex valued function of the real variablex and satisfies an equation in Hamiltonian
form (the Schr̈odinger equation), i∂

∂t
ψ(x) = H(x)ψ(x), whereH(x) is the Hamiltonian

given by

H(x) = −D2

2m
+ eA0. (33)

This equation is obtained from the non-relativistic energy–momentum relation,E = p2/2m,
by the replacementpµ → i∂µ together with a minimal coupling. To describe a system
at any time t in the future, one needs to know onlyH and |ψ(t0)〉. The probability
interpretation of a state|ψ〉 representing a single particle is given by〈ψ|ψ〉 = +1, which in
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the position representation becomes〈ψ|ψ〉 = ∫
j0 d3x = +1, wherej0 = ψ∗(x)ψ(x).

An operator� is Hermitian if �† = (�∗)T = �, and a transformationU unitary if
U † = U−1. Hermitian operators have real eigenvalues and expectation values, while unitary
transformations preserve the value of〈ψ|ψ〉.

The definitions given above of|ψ〉, ψ(x), 〈ψ|ψ〉, 〈�〉, �†, etc follow from the
mathematics of inner product spaces [9, 10]. A vector spaceV with an inner product
defined on it is known as an inner product space. Ifw, y ∈ V , then〈w|y〉 = 〈y|w〉∗ for
vectorsw andy defined on the field of complex numbers. An operator� acts on a vector
y to give �y ∈ V . In general,〈w|�y〉 = 〈�]w|y〉 for some�]. If �] = �, then� is
Hermitian. If y → y′ = Uy, ∀y ∈ V , then〈w′|y′〉 = 〈Uw|Uy〉 = 〈w|y〉 if U] = U−1. U

is unitary if U] = U−1.
A Hilbert space H is an infinite dimensional inner product space. The space

L2(−∞, +∞) with representativesf (x) which are square integrable functions of some
real variablex is a Hilbert space and is the model for quantum mechanical Hilbert spaces.
With the real variablex beingx, the inner product is

〈w|y〉 =
∫

w†(x)y(x) d3x. (34)

A general finite dimensional inner product space is defined by〈w|y〉 = w†Ky,
with K a Hermitian, non-singular matrix. The space is proper ifK is positive definite
(w†Kw ≥ 0 ∀w, with equality only for w = 0). It is improper (indefinite) ifK is
Hermitian and non-singular but the quantityw†Kw is indefinite in sign. A more general
form of equation (34) is given by

〈w|y〉 =
∫

w†(x)Ky(x) d3x. (35)

Relativistic wave equations are based on the energy–momentum relationpµpµ = m2.
The first published relativistic wave equation was the KG0 equation

(DµDµ + m2)9KG0(x) = 0. (36)

This equation was intended to be a wave equation analogous to the Schrödinger equation,
retaining as much of the non-relativistic quantum mechanical formalism as possible, but
using the relativistic energy–momentum relation. Equation (36) is second order in the
time derivative and so to specify the time development of the wavefunction requires not
only |ψ(t0)〉, but also|ψ̇(t0)〉. Also, the equation is not in Hamiltonian form. Yet another
question appears, what happens to the Hilbert space formalism, is it possible to define an
inner product and probability interpretation for equation (36)?

The choice of the Hilbert spaceH out of the possible choices of inner product spaces
for non-relativistic quantum mechanics can be motivated via the existence of a conserved
current density for the Schrödinger equation. The equation

∂ρ

∂t
+ ∇ · j = ∂j0

∂t
+ ∇ · j = ∂µjµ = 0 (37)

is the well known equation of continuity, withρ = j0 a density. Such an equation can be
derived for the Schr̈odinger equation(i ∂

∂t
− H(x))ψ(x) = 0 by constructing the following

quantity

ψ∗(x)

(
i
∂

∂t
− H(x)

)
ψ(x) −

((
i
∂

∂t
− H(x)

)
ψ(x)∗

)
ψ(x) = 0 (38)
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which can be written [11] as

∂

∂t
(ψ∗(x)ψ(x)) + ∇ · j = 0. (39)

Hence ψ∗(x)ψ(x) is a density and its integral over all space
∫

ψ∗(x)ψ(x) d3x is just
〈ψ|ψ〉, the inner product of two vectors in the quantum mechanical Hilbert spaceH using
the position representation.

To search for a conserved current density for the KG0 equation a similar procedure is
used [12]:

9∗
KG0(x)((DµDµ + m2)9KG0(x)) − ((DµDµ + m2)9KG0(x))∗9KG0(x) = 0. (40)

This can also be written in the form of equation (37).j
µ

KG0 is given by

j
µ

KG0 = m−1i(9∗
KG0(x)

↼↽→
Dµ 9KG0(x))

= m−1i(9∗
KG0(x)Dµ9KG0(x) − (Dµ9KG0(x))∗9KG0(x)). (41)

This method of deriving the conserved current density is analogous to the method of
non-relativistic quantum mechanics (equation (38)), even though equation (36) is not in
Hamiltonian form. One is seeking to find an equation∂µjµ = 0, with jµ transforming as
a 4-vector.jµ given by equation (41) clearly transforms in the correct manner. This is a
derivation from quantum mechanics, not field theory, however, in any case the conserved
current derived using the Lagrangian formalism for fields matches the one derived using
the formalism of quantum mechanics.

The zeroth component ofjµ given by equation (41) is not positive definite. This was
recognized immediately when the KG0 equation was initially published indicating thatj0

is something more than a probability density. This is mentioned in almost every textbook
on relativistic quantum mechanics and it is often stated that the equation should also be first
order in the time derivative. However, the fact that the Hilbert space formalism is also lost
seems to be given less explicit attention. It is not possible to write

∫
j0

KG0 d3x in the form

〈9KG0|9KG0〉 = ∫
9

†
KG0(x)K9KG0(x) d3x asj0

KG0 contains not only the quantity9KG0(x),
but alsoD09KG0(x), being

j0
KG0 = m−1i(9∗

KG0(x)D09KG0(x) − (D09KG0(x))∗9KG0(x)). (42)

Dirac’s equation in 1928 [2] was an attempt to regain the ‘lost’ formalism of quantum
mechanics using a relativistic wave equation. It was a linear equation related to the KG0
equation that had the following advantages: (i) it was a first order in the time derivative
equation in Hamiltonian form, hence the important time development of the wavefunction
was regained; (ii) there existed an inner product formalism based upon a 4-component vector
|9D〉 in a Hilbert space with

〈9D|9D〉 =
∫

9
†
D(x)K9D(x) d3x K = 14 (43)

(iii) the inner product was positive definite which at the time agreed with the interpretations
of experiments; (iv) the equation explained the ‘spin’ of the electron and the hydrogen atom
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spectrum. However, the negative energy states signalled the need for a deeper understanding
of the situation.

In this work the motivations of Dirac are altered [1] only in that an indefinite inner
product similar to that in [3] is desired, together with a relativistic spin-1

2 equation that
resembles that given in [3]. Given that an equation in Hamiltonian form is sought,
some linearization procedure must be applied to the original quadratic relativistic energy–
momentum relationpµpµ = m2.

Reconsider the zeroth component of the Klein–Gordon current given in equation (42).
This involves the product of(D09KG0(x))∗ with 9KG0(x), and the product of9∗

KG0(x)

with (D09KG0(x)). To write this in the form of an inner product given by
equation (35) above, consider (the position representative of) a new vectorλ(x) =
(9KG0(x), (m−1iD0)9KG0(x))T , instead of9KG0(x). Then

j0
KG0 = λ(x)†Kλ(x) with K =

(
0 1
1 0

)
. (44)

Hence 〈λ|λ〉 = ∫
j0

KG0 d3x = ∫
λ(x)†Kλ(x) d3x as required. Observe thatj0

KG0 is
indefinite [10]. What sort of equation doesλ(x) satisfy? Mathematically, the answer
is simple. Given a second-order ordinary differential equation for some quantityX, it can
be written as two first-order equations, forX and Ẋ [13]. Hence there appears a two-
component equation for the new wavefunctionλ(x) = (9KG0(x), (m−1iD0)9KG0(x))T .
This is a promising candidate for a relativistic wave equation for spin-0 particles, but from
the theory of indefinite inner product spaces [10] it is known that the most convenient form
of K is a diagonal matrix, and an indefinite (also Hermitian and non-singular)K can always
be rotated to diagonal form via a conjunctive transformation. Hence defineλ(x) = SΘ(x),
with

S = 1√
2

(
1 1
1 −1

)
. (45)

A new inner product is obtained, with matrix

K ′ = S†KS K ′ =
(

1 0
0 −1

)

Θ(x) = 1√
2

(
(1 + (m−1iD0))9KG0(x)

(1 − (m−1iD0))9KG0(x)

)
. (46)

Θ(x) is precisely9FV0(x). Hence the natural mathematical construction of an inner product
space based upon the conserved current of the KG0 equation leads to the FV0 equation. It
is evident that this construction is just the Feshbach–Villars linearization procedure.

The Feshbach–Villars linearization procedure has been justified for spin-0 particles. In
the spin-12 case, one must start with the KG1

2 equation. The conserved current density for the
KG 1

2 equation is derived in a similar manner to that for the KG0 equation (equation (40)),
with an additional consideration to ensure thatjµ transforms correctly.

Consider a manifestly covariant wave equation of the formFψ(x) = 0, whereF

contains a mass term multiplied by the identity matrix and also derivative terms multiplied
by matrices. Note that equations (15)–(17) are of this form. An equation of the form
∂µjµ = 0 is sought, and∂µjµ is a scalar. An inner product formalism requires〈ψ|ψ〉 =∫

j0 d3x = ∫
ψ†(x)Kψ(x) d3x, i.e. j0 being the product of some vector with the complex
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conjugate transpose of the same vector and a non-singular Hermitian matrix sandwiched
in the middle. Hence it is natural to form the quantitiesψ†(x) multiplied by Fψ(x), and
(Fψ(x))† multiplied byψ(x). In order to obtain products which transform as scalars, in the
spin-1

2 case a matrix3 is inserted to giveψ†(x)3Fψ(x) and(Fψ(x))†3ψ(x). These will
transform as scalars ifψ†(x)3ψ(x) transforms as a scalar. The sum or difference of these
products is then taken (which removes the mass terms) in order to form the divergence of a 4-
vector. One must check thatjµ indeed transforms as a 4-vector, which is trivial if one knows
howψ(x) transforms. The KG0 conserved current density given by equation (41) transforms
as a 4-vector, as9KG0(x) is a scalar. Here3 = 1. The Dirac equation hasF = i 6D −m14,
and3 = γ 0. The quantity9†

D(x)3F9D(x) is simply 9
†
D(x)(i ∂

∂t
14 − HD)9D(x), with the

Dirac HamiltonianHD given in [12]. Thus, the relativistic procedure discussed here reduces
for the Dirac equation to the same method (equation (38)) used to derive the conserved
current density for the Schrödinger equation.

In the KG1
2 case3 is againγ 0, as9KG1/2(x) is also a bispinor. Using equation (32)

for the KG1
2 equation, construct the quantity

9
†
KG1/2(x)γ 0((DµDµ + m2)14 + e

2
σµνFµν)9KG1/2(x)

−
((

(DµDµ + m2)14 + e

2
σµνFµν

)
9KG1/2(x)

)†
γ 09KG1/2(x) = 0. (47)

This can be written as∂µjµ = 0, with

j
µ

KG1/2 = m−1i(9†
KG1/2(x)γ 0

↼↽→
Dµ 9KG1/2(x))

= m−1i(9†
KG1/2(x)γ 0Dµ9KG1/2(x) − (Dµ9KG1/2(x))†γ 09KG1/2(x)). (48)

The definition9KG0 = ψ90 = ψ ⊗ 90 given in section 5 can now be used to conveniently
define the FV1

2 inner product. With this definitionj0
KG1/2 becomes

j0
KG1/2 = m−1i(ψ∗(x)

↼↽→
D0 ψ(x))(90(x)90(x)). (49)

To obtain an inner product in the standard form (35) the Feshbach–Villars linearization
procedure is applied to the KG12 equation. Construct

λ1/2(x) =
(

9KG1/2(x)

(m−1iD0)9KG1/2(x)

)
=

(
ψ(x)

(m−1iD0)ψ(x)

)
⊗ 90(x) (50)

and perform the same conjunctive transformation as in equation (46) to obtain

λ1/2(x) = S1/2Θ1/2(x) = (S ⊗ 14)Θ1/2(x) (51)

with S given by equation (45) as before. The inner product forλ1/2(x)

〈λ1/2|λ1/2〉 =
∫

λ
†
1/2(x)K1/2λ1/2(x) d3x =

∫
(λ†(x)Kλ(x))(90(x)90(x)) d3x (52)

is given by

K1/2 = K ⊗ γ 0 =
(

0 1
1 0

)
⊗ γ 0 (53)
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while for Θ1/2(x)

K ′
1/2 = K ′ ⊗ γ 0 =

(
1 0
0 −1

)
⊗ γ 0. (54)

Θ1/2(x) is precisely the FV12 wavefunction9 ′
FV1/2(x) = 9 ⊗ 90 and

〈Θ1/2|Θ1/2〉 = 〈9 ′
FV1/2|9 ′

FV1/2〉 =
∫

9
′†
FV1/2(x)K ′

1/29
′
FV1/2(x) d3x

=
∫

(9†(x)K ′9(x))(90(x)90(x)) d3x (55)

defines the inner product for the FV1
2 equation.

The Feshbach–Villars linearization procedure has been shown to be a natural
mathematical procedure which can be applied to the KG1

2 equation as well as the KG0
equation.

Equations (49)–(51) clearly show that the procedure preserves the mathematically
convenient bispinor in the wavefunction.

It is evident from the above discussion that the FV1
2 equation has a useful advantage

over the KG1
2 equation in that the FV12 inner product assumes the standard mathematical

form. This, combined with the fact that only the FV1
2 equation is in Hamiltonian form,

indicates that the FV12 equation is the preferred equation when the contruction of a relativistic
quantum mechanics is considered.

7. The eight-component equation decoupled

In the Weyl representation of the gamma matrices the FV1
2 equation decouples into two

separate equations, as mentioned above. This can be seen, as discussed in section 3, due
to the possibility of forming a second-order relativistically invariant equation using only
one of the two spinor irreducible representations. Alternatively, it can be understood by
considering the matrixγ5.

Consider equations (16) and (17) given in section 4. For convenience, define the matrix
A = i 6D/m, write equation (16) as(A2−12

4)9 = 0 and equations (17) as(A±14)9± = 0.
Let D3 andD4 be the subspaces of solutions of the KG1

2 equation defined by

93 ∈ D3, 93 = 1
2(14 + γ5)9 94 ∈ D4, 94 = 1

2(14 − γ5)9. (56)

Thus 93 and 94 are linear combinations of KG12 solutions. D3 and D4 together form a
decomposition ofF . 93 and 94 are eigenstates ofA2 with eigenvalue +1 (solutions of
equation (16)) . All elements ofD3 (respectivelyD4) are eigenvectors ofγ5 with eigenvalue
+1 (respectively –1). Henceγ5 decomposesF into D3 andD4. The existence of invariant
subspaces ofγ5 requires a basis in whichγ5 and the projectors1

2(14 ± γ5) are block
diagonal. In this basis the vector93 (respectively94) has the lower (respectively upper)
two components zero. Since both93 and 94 are eigenvectors ofA2, then in this basis
A2 must also be block diagonal and hence the KG1

2 equation (and thus the FV12 equation)
decouples into two parts. Note that elements ofD− andD+ are not eigenvectors ofγ5, so
a similar result does not follow for the Dirac equation.
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The decoupling raises the possibility of using only one of the decoupled equations for
calculations. In fact this was done already for hydrogenic atoms in [1]. There, however, the
calculation was only carried far enough to obtain the four-component wavefunction9ξ of
one of the decoupled equations. In section 10, the eight-component wavefunctions9FV1/2

are obtained for the part of the solution space describing the bound electron states. In the
rest of this section, a general procedure to obtain the full solution space for9FV1/2 will be
outlined.

The decoupling of the FV12 equation occurs when it is written as in equation (5). It
does not matter which of the decoupled equations is used for calculations, but we shall
always choose the upper equation ((i ∂

∂t
14 − Hξ)9ξ = 0) for consistency. Given a solution

9ξ of the upper half of equation (5), the solution9η̇ of the lower half is simple to obtain
via spatial inversion. Then it is necessary to combine the two solutions with an appropriate
factor eiδ to form the eight-component wavefunction9FV1/2 = (9ξ , eiδ9η̇)

T . The point
of the factor is the following. The operatorγ5 commutes with the KG12 equation. This
corresponds to the commutativity of12⊗γ5 with H ′

FV1/2 (equation (30)). Specializing to the
Weyl representation of the gamma matrices whereγ5 is given by equation (11), and writing
the FV1

2 equation as equation (5) to take advantage of the decoupling, leads to the result
that if (9ξ , 9η̇)

T is a solution of equation (5), then so is(9ξ , −9η̇)
T . Both these solutions

have the same eigenvalueE. Since a linear combination is also a solution with eigenvalue
E, then, in general,(9ξ , eiδ9η̇)

T is a solution of equation (5), also with eigenvalueE. In
describing the solution space a linearly independent set of solutions is desired and thus two
and only two choices ofδ are necessary.

To decide which two values ofδ should be used, one only has to consider how9η̇ is
obtained from9ξ . All the quantities in the wavefunction9ξ are simply replaced by their
corresponding spatially inverted counterparts. Clearly, the same must be done in going from
9η̇ to 9ξ . The process9ξ → 9η̇ → 9ξ is the identity and so e2iδ = +1. Therefore,δ = 0
and δ = π . In an arbitrary gamma matrix representation theδ = π solution is obtained
from theδ = 0 solution by the premultiplication of90 by γ5.

After the two solutions are obtained they have to be normalized. The value of
the normalization integral of theδ = π solution is always opposite in sign to that
of the δ = 0 solution. As discussed in the next section, for a given solution, the
normalization process itself cannot change the sign of the normalization integral. For
square-integrable states, a solution with〈9FV1/2|9FV1/2〉 > 0 can be ‘maximally’ (see next
section) normalized to give〈9FV1/2|9FV1/2〉 = +1, while a solution with〈9FV1/2|9FV1/2〉 <

0 can be ‘maximally’ normalized to give〈9FV1/2|9FV1/2〉 = −1. In the case of
continuum states where the wavefunction is not square-integrable, the normalization takes
the form 〈9FV1/2 E|9FV1/2E′ 〉 = +δ(E − E′) for a 〈9FV1/2|9FV1/2〉 > 0 solution and
〈9FV1/2 E|9FV1/2E′ 〉 = −δ(E − E′) for a 〈9FV1/2|9FV1/2〉 < 0 solution.

It is in general not true that theδ = 0 states are the ones with〈9FV1/2|9FV1/2〉 > 0.
However, an eigenvector9FV1/2 of HFV1/2 with eigenvalueE > 0 and〈9FV1/2|9FV1/2〉 > 0
is a state with chargee and positive energy which describes the usual ‘particle’ state and
reduces in the non-relativistic limit to the usual Schrödinger state. The chargee is seen in
the minimal coupling∂µ → ∂µ + ieAµ.

After the eight-component solutions are obtained and maximally normalized, their
physical interpretation can be discussed. The procedure outlined in this section for
constructing9FV1/2 from 9ξ clearly holds for any problem in which a classical external
electromagnetic field is introduced via a minimal coupling.
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8. The associated quantum mechanical formalism for the FV12 equation

Feshbach and Villars [3] give some results to develop a quantum mechanical for-
malism for the FV0 equation using the indefinite inner product〈9FV0|9FV0〉 =∫

9
†
FV0(x)τ39FV0(x) d3x. The presence of the matrixK ′ = τ3 leads to a modified defini-

tion of �] in section 6, namely (usingτ3 = τ
†
3 = τ−1

3 ) �] = τ3�
†τ3, whereas for the unitary

inner product it is given by�] = �†. In general, the matrixK in (35) must be non-singular
and Hermitian [10] and this is the case for bothK ′ = τ3 andK ′

1/2 = τ4 in (54). Consider

now the spin-12 case, whereτ4 = τ
†
4 = τ−1

4 . A operator is pseudo-Hermitian ifτ4�
†τ4 = �

and a transformationU is pseudo-unitary ifτ4U
†τ4 = U−1. H ′

FV1/2 is easily shown to be
pseudo-Hermitian by using properties of the Kronecker product(A ⊗ B)† = A† ⊗ B† and
(A⊗B)(C ⊗D) = (AC)⊗ (BD) which are valid here as the elements of the matrixτ4 are
c-numbers, and the dimensions of the matrices appropriate.

τ4H
′†
FV1/2τ4 = (τ3(τ3 + iτ2)

†τ3) ⊗
(

γ 0

(
1

2m

(
−D214 + e

2
σµνFµν

))†
γ 0

)
+ m∗(τ3τ

†
3τ3) ⊗ (γ 0(14)

†γ 0) + (eA0)
∗(τ3(12)

†τ3) ⊗ (γ 0(14)
†γ 0) (57)

which equalsH ′
FV1/2, as σµν† = γ 0σµνγ 0 and m, e and A0 are real. HenceH ′

FV1/2
(analogously toHFV0) plays the r̂ole of the time transformation operator.H ′

FV1/2 has a
complete set of orthogonal eigenfunctions, as will be shown in a later paper. These are
obtained simply by solving the equationHξ9ξ = E9ξ and then constructing the full
FV 1

2 wavefunctions using the method given in the previous section withδ = 0 andδ = π

respectively. Thus a quantum mechanical formalism similar to that for the FV0 equation [3]
can be developed, for example〈d�/dt〉 = d

dt
〈�〉. The velocity operator for free particles

is given byvk = (pk/m)((τ3 + iτ2) ⊗ 14) which is closely related to the velocity operator
of the FV0 equationvk = (pk/m)(τ3 + iτ2) [3].

In non-relativistic quantum mechanics the expectation value of an operator� is defined
by 〈�〉 = (

∫
9∗(x)�(x)9(x) d3x)/(

∫
9∗(x)9(x) d3x). The definition given in [3] for

the FV0 equation

〈�〉 =
∫

9
†
FV0(x)τ3�(x)9FV0(x) d3x (58)

clearly holds only for normalized wavefunctions and implies, given the indefinite inner
product,

〈�〉 =
∫

9
†
FV0(x)τ3�(x)9FV0(x) d3x

| ∫ 9
†
FV0(x)τ39FV0(x) d3x|

(59)

in the general case. Equation (59) must also be used for plane waves and other solutions
which are not square-integrable. While the definition (58) is always used in discussions
of the FV0 equation both in [3] and in textbooks (see for example [14]), and a consistent
interpretation requires this, some mathematical justification from the theory of indefinite
inner product spaces is helpful. This is found in the normalization of vectors that have
〈ψ|ψ〉 < 0 (see chapter IX of [10]). There it is shown that the most that can be done is
to ‘maximally normalize’ such vectors, which means dividing, not by〈ψ|ψ〉 as in the case
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of positive definite inner products, but by|〈ψ|ψ〉|. Thus follows the definition given by
equation (59). For the FV12 equation it becomes

〈�〉FV1/2 =
∫

9 ′
FV1/2

†
(x)τ4�(x)9 ′

FV1/2(x) d3x∣∣∣∫ 9 ′
FV1/2

†
(x)τ49

′
FV1/2(x) d3x

∣∣∣ . (60)

From the FV1
2 Hamiltonian (30) it is clear that the spin termσµνFµν in (32) is not broken

by the Feshbach–Villars linearization procedure in an arbitrary gamma matrix representation.
Corresponding to this the bispinor is preserved in the wavefunction. The gamma matrix
algebra together with its unitary transformations among representations is thus retained. In
general, however, a transformation which preserves the value of〈9 ′

FV1/2|9 ′
FV1/2〉 for any

|9 ′
FV1/2〉 is pseudo-unitary withτ4U

†τ4 = U−1. The matrixτ4 = τ3 ⊗ γ 0 and it is theτ3

which makes the transformation pseudo-unitary analogous to the spin-0 case. If we consider
a change of the gamma matrix representation according to the usual unitary transformations,
this acts only on the bispinor part90 of 9FV1/2 = 9 ⊗ 90, and clearly also preserves the
inner product withj0

FV1/2(x) = 9 ′
FV1/2

†(x)τ49
′
FV1/2(x) = (9†(x)τ39(x))(90(x)90(x)),

because bilinear covariants are invariant under such transformations. In section 6 it was
mentioned that the ideal form of an indefinite inner product is a diagonal matrix (with 1s and
–1s on the diagonal).τ4 = τ3⊗γ 0 is block diagonal. However, theγ 0 is clearly understood
to be due to the gamma matrix algebra present in any correct relativistic spin-1

2 equation,
and theτ3 part of τ4 is of the desired diagonal form diag(+1, –1). The identity operator for
the FV1

2 equation is
∑

i σi |9 ′
FV1/2i〉〈9 ′

FV1/2i |, whereσi = ±1 if 〈9 ′
FV1/2i |9 ′

FV1/2i〉 = ±1.

9. The use of Kronecker products for the FV1
2 equation

There are two distinct yet equivalent ways of writing the FV1
2 equation using Kronecker

products. The first takes advantage of the decoupling of the equation in the Weyl
representation of the gamma matrices, while the second preserves the bispinor in the FV1

2

wavefunction. Consider the first case where the FV1
2 wavefunction is

9FV1/2 =
(

9ξ

9η̇

)
=

(
9 ⊗ ξ0

9 ⊗ η̇0

)
. (61)

This was used in equations (23) to (27) to define the linearization procedure for the two
decoupled parts of the KG12 equation in the Weyl representation of the gamma matrices.
The FV1

2 inner product defined via equation (54) is valid for the second case with
9FV1/2 = 9 ⊗ 90, rather than for equation (61). If equation (61) is used, the inner product
becomes

〈9FV1/2|9FV1/2〉 =
∫

9
†
FV1/2(x)τ59FV1/2(x) d3x (62)

τ5 =


0 0 12 0
0 0 0 −12

12 0 0 0
0 −12 0 0

 = τ1 ⊗ (τ3 ⊗ 12). (63)
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Note thatτ5 is non-singular and Hermitian as required [10]. With this value ofτ5,

〈9FV1/2|9FV1/2〉 =
∫

(9†(x)τ39(x))(ξ
†
0(x)η̇0(x) + η̇0

†(x)ξ0(x)) d3x. (64)

Consider now the method to obtain the FV1
2 inner product containingτ5 from

∫
j0

KG1/2 d3x,
where

j0
KG1/2 = m−1i(9†

KG1/2(x)γ 0
↼↽→
D0 9KG1/2(x)). (65)

To construct9FV1/2 given by equation (61), firstly the bispinor9KG1/2 is split into ξ and
η̇ (see equation (23)), henceγ 0 in equation (65) is split intoτ1 ⊗ 12 (γ 0 = τ1 ⊗ 12 in the
Weyl representation of the gamma matrices). Then

9KG1/2 =
(

ξ

η̇

)
=

(
ψξ0

ψη̇0

)
=

(
ψ ⊗ ξ0

ψ ⊗ η̇0

)
(66)

is rewritten using the linearization procedure as9FV1/2 = (9 ⊗ ξ0, 9 ⊗ η̇0)
T . Hence

τ1 ⊗ 12 → τ1 ⊗ (τ3 ⊗ 12) = τ5. In general, the linearization procedure takes aj0 containing
a derivative term for a second-order equation and replaces the derivative by aτ3 for a
first-order (in the time derivative) equation with twice the number of components. In the
spin-1

2 case, it is necessary to writeτ3 together withγ 0 in a convenient fashion.
If instead the KG1

2 equation is written in an arbitrary gamma matrix representation and
the linearization procedure applied directly, then this corresponds to the second case with
the FV1

2 wavefunction defined by9 ′
FV1/2(x) = 9 ⊗ 90 and

〈9 ′
FV1/2|9 ′

FV1/2〉 =
∫

9
′†
FV1/2(x)τ49

′
FV1/2(x) d3x (67)

whereτ4 is K ′
1/2 defined by equation (54). Specializing to the Weyl representation of the

gamma matrices for comparison purposes, this becomes

τ4 =


0 12 0 0
12 0 0 0
0 0 0 −12

0 0 −12 0

 = τ3 ⊗ γ 0
Weyl = τ3 ⊗ (τ1 ⊗ 12). (68)

Here the bispinor is not split soγ 0 remains itself inτ4. Equation (67) in the Weyl
representation of the gamma matrices gives of course exactly the right-hand side of
equation (64).

Consider what happens if an attempt is made to deriveτ5 in an arbitrary gamma matrix
representation. Here,τ4 is τ3 ⊗ γ 0. If it is possible thatγ 0 can be written asγ 0 = τ6 ⊗ τ7,
whereτ6 andτ7 reflect the splitting of the bispinor9KG1/2 into (α, β)T (equation (29)), then
one could deriveτ5 = τ6⊗(τ3⊗τ7). Only in the Weyl representation of the gamma matrices
is it convenient to do this. Both methods obviously give the same final〈9|9〉 as both inner
products are derived from the samej0

KG1/2. To obtain the wavefunctions in the two cases
from each other, one only needs to knowξ0, η̇0 and9. In general, the quantum mechanical
formalism can be developed for either of the two ways of writing the FV1

2 equation using
Kronecker products. They are equivalent to one another. Convenience dictates which is
chosen in a given situation.
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While the use of Kronecker products is convenient, some care must be taken when
operators are involved. For example, equation (30) for the FV1

2 Hamiltonian H ′
FV1/2 in

an arbitrary gamma matrix representation contains the term(τ3 + iτ2) ⊗ (−D214/(2m)).
When acting on the wavefunction9 ′

FV1/2 = 9 ⊗ 90, the operatorD2 of course acts on
the x dependent parts in the whole wavefunction, not just those in90. Strictly speaking,
the term should be written as(−D2/(2m))((τ3 + iτ2) ⊗ 14), but this is messy when added
to the term(τ3 + iτ2) ⊗ (eσµνFµν/(4m)) which itself is correct (but could be written as
(eFµν/(4m))((τ3 + iτ2) ⊗ σµν)). In all cases in this series of papers, the use of Kronecker
products to write a 8×8 matrixM asA⊗B whereA andB are 2×2 and 4×4 matrices
respectively is rigorously correct, as are the definitions of the wavefunctions9 in (24) and
λ1/2(x) in (50) (there is no time dependence in90). For convenience, however, sometimes
a scalar (in the eight-dimensional space) operators will be placed inM asA ⊗ (sB) or
(sA) ⊗ B or A ⊗ (Bs) or (As) ⊗ B, instead ofs(A ⊗ B). These comments also apply
to the Weyl representation of the gamma matrices, where a 4× 4 matrix is written as the
Kronecker product of 2× 2 matrices.

10. The hydrogen atom

The solution to the hydrogen atom was discussed at length in the first paper to suggest that
the FV1

2 equation can be used successfully for problems of a single particle moving in a
classical external electromagnetic field. It was seen there that only one of the two equations
is necessary to obtain the eigenvalue spectrum and four-component wavefunctions9ξ . The
full FV 1

2 wavefunction9FV1/2 requires both9ξ and9η̇, together with a choice of the factor
eiδ. Once9FV1/2 is constructed, then the quantum mechanical formalism with the indefinite
inner product can be used to analyse the solutions.

Since9η̇ is obtained from9ξ by spatial inversion, the radial wavefunctions for9η̇ must
be identical to those of9ξ and the angular wavefunctions must change by a sign ofκ, with κ

defined by equation (21), [1]. The difference inκ can be traced back to the angular operator
� in the preceding paper where�ξ = L212 − iZασ · r̂ becomes�η̇ = L212 + iZασ · r̂
due to the sign change of theσ · E term in the Hamiltonian.�ξ has the same eigenvalues
as�η̇ leading to the same radial equations and hence energy spectrum.

To normalize the wavefunctions one can use either9FV1/2 = (9ξ , 9η̇)
T or 9 ′

FV1/2 =
9 ⊗ 90, as described in the previous section. For the hydrogen atom one has

9 =
(

φ(r)

χ(r)

)
90 =

(
ξ0

eiδη̇0

)
=

(
2(l,l′,j,m)ξ (θ, φ)

eiδ2(l,l′,j,m)η̇(θ, φ)

)
=

(
2ξ

eiδ2η̇

)
. (69)

In the bound-state case, choosingδ = 0 leads to 〈9 ′
FV1/2|9 ′

FV1/2〉 > 0, where
〈9 ′

FV1/2|9 ′
FV1/2〉 equals∫

(9†τ39)(9090) d3x =
∫

r2 dr(|φ(r)|2 − |χ(r)|2)
∫ ∫

sinθ dθ dφ(2
†
ξ2η̇ + 2

†
η̇2ξ ). (70)

Since〈9 ′
FV1/2|9 ′

FV1/2〉 > 0 and the bound-state solutions are normalizable, the integral in
equation (70) is set equal to+1, which provides the values of the normalization constants
C and C ′ mentioned in equation (52) of the preceding paper. It is of course possible to
define only one normalization constant, but for convenienceC ′ is defined so that the angular
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integral equals+1, and thenC used to normalize the radial integral to+1. The values of
C andC ′ are

C = |3|√0(2γ + n′ + 1)

0(2γ + 2)
√

Z(n′ − 1)!
C ′ = (2(1 − κ2))−

1
2 . (71)

For these states,〈H ′
FV1/2〉 = +E and so they are interpreted as the usual positive energy

electrons with charge (+e) bound in the attractive nuclear potential of charge (−Ze). There
is a one-to-one correspondence between these solutions and the Dirac bound-state spectrum.

There are also continuum solutions of the FV1
2 equation, which can be obtained in

analogy to the method for the Dirac equation presented in [5]. This amounts to replacing
|3| (equation (28), [1]) by−i3, 3 ∈ <, which is necessary as now|E| > α−2, and
reconsidering the normalization of the wavefunctions. WhenE > α−2, the δ = 0 solutions
correspond to the positive energy continuum electron solutions of the Dirac equation. When
E < −α−2, the δ = π solutions correspond to the negative energy continuum electron
solutions of the Dirac equation.

The three sets of solutions discussed above (continuum electrons of both positive and
negative energy and bound electrons) exhaust the possible solutions of the Dirac equation.
However, they cover only one half of the FV1

2 solution space and the other half has yet
to be discussed. For each solution of the Dirac equation with eigenvalueE, there are two
linearly independent solutions of the FV1

2 equation having the same eigenvalueE. In the
above,δ has been chosen to obtain the solution which corresponds physically to the Dirac
solution. The other choice ofδ and the physical interpretation it leads to will be considered
in a later paper.

It was mentioned in the preceding paper that the values ofn′ and γ differ for the
j = l + 1

2 cases using the two equations. Here,γFV1/2 = γD − 1 andn′
FV1/2 = n′

D + 1. The
sumγ +n′ is the same for both equations for a given state, as could be expected. Moreover,
the physical interpretation of a given state is identical. The deviation is an artifact of the
different radial wavefunctions for the two equations, the correspondence of which will now
be discussed.

The wavefunctions derived in the preceding paper can be compared with the Dirac
wavefunctions [15] which are (using the standard representation of the gamma matrices)

9Djm =
(

g(r)Ym
lj

if (r)Ym
l′j

)
(72)

f (r) = 1

r

√
1 − ε e−λDr (φ1 − φ2) (73)

g(r) = 1

r

√
1 + ε e−λDr (φ1 + φ2) (74)

φ1 = −cn′
(

Zα√
1 − ε2

− χ

)−1/2

(2λDr)γ F (1 − n′, 2γ + 1; (2λDr)) (75)

φ2 = c

(
Zα√
1 − ε2

− χ

)+1/2

(2λDr)γ F (−n′, 2γ + 1; (2λDr)) (76)

whereχ = ±(j + 1
2) for l = j ± 1

2; λD = |3| andc is a normalization constant.
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The FV1
2 wavefunctions were derived in the Weyl representation of the gamma matrices,

whereas the Dirac wavefunctions are given in the standard representation. In general, the
Dirac wavefunctions for a central field problem will be of the form given on page 54, [12]

9Djm =
(

g+
j (r)Ym

lj + g−
j (r)Ym

l′j
if +

j (r)Ym
lj + if −

j (r)Ym
l′j

)
. (77)

The standard representation of the gamma matrices has the bispinor given by

9 =
(

α

β

)
= S

(
ξ

η̇

)
S = 1√

2

(
12 12

12 −12

)
. (78)

Under spatial inversion,α andβ transform into themselves (multiplied by opposite phases)
and hence this requires eitherg+

j or g−
j to be zero (and correspondinglyf −

j or f +
j to be

zero), which gives the form of equation (72). In the Weyl representation of the gamma
matrices,ξ and η̇ transform into each other, and so bothYm

lj and Ym
l′j must be included

in each part of the wavefunction. If the FV1
2 wavefunction is transformed to the standard

representation, then this involves only the application ofS(= S−1) to 90. This gives

9 ′
0 =

√
2C1

( Ym
lj

iκYm
l′j

)
(79)

which shows that, in the same gamma matrix representation, the angular eigenfunctions are
identical. Thus the well established classification of states in terms of angular momentum
is preserved.

The radial wavefunctions differ in the confluent hypergeometric functions used. The
FV 1

2 equation has only one confluent hypergeometric function for a given state, however
this is multiplied by a simple polynomial of the form 1+ m−1iD0, with D0 containing
a r−1 piece from theA0 term. On the other hand, the Dirac wavefunction has a linear
combination of two confluent hypergeometric functions.

In understanding the FV12 wavefunctions, it is useful to compare them to those obtained
using the KG1

2 equation [16]. In [16] one half of the KG12 equation is used to derive the
solutions, the equation foṙη. A single second-order radial equation is obtained, which is
written in the form of a differential equation for the confluent hypergeometric function. The
eigenvalue spectrum and wavefunctions are then derived by analogy with the Schrödinger
radial equation. The wavefunctions are not normalized, as no inner product or full KG1

2
wavefunction is defined.

The energy eigenvalue spectra derived in [16] are identical to those using the FV1
2 (and

Dirac) equation. It will now be shown that the FV1
2 wavefunctions are consistent with those

obtained in [16]. To do this, a connection must be made between the notation in [16] and
in [1]. The symbols in [16] are given an AB subscript, and they use units where ¯h = 1 = c,
andE andr are in ordinary units. The following relations exist

γAB = Zα λAB = Zε

|3| = n′ + γ ρAB = ρ SAB = γspin0 (80)

S±AB = γspin1/2 x±AB = iκη̇

Zα
(κη̇ = −κξ ). (81)

The solution method in [16] begins with the standard representation of the gamma matrices
and then after some algebra theη̇ solution is obtained. The angular functions in [16] are
identical to2η̇.
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Now consider the radial wavefunctions of the FV1
2 equation. They can be written as

1

r

(
f (r)

g(r)

)
= C|3| e−|3|r (2|3|r)γ F (1 − n′, 2γ + 2; 2|3|r)

×
(

1 + α2(E + Z/r)

1 − α2(E + Z/r)

)
. (82)

The factors 1±α2(E +Z/r) are simply 1±m−1iD0. Hence, given how9 is derived from
ψ (equation (24)), one then expects the radial wavefunction derived in [16] to be

1

r
h(r) = 1√

2

1

r
(f (r) + g(r)) =

√
2C|3| e−|3|r (2|3|r)γ F (1 − n′, 2γ + 2; 2|3|r). (83)

The radial wavefunctions given in [16] are

V ±(ρ) = e−ρ/2ρS±L
2S±+1
λ−S±−1(ρ). (84)

With ρ = 2|3|r, Lα
β(ρ) = c′F(−β, α + 1; ρ) [17], λ − S± = n′, 2S± + 1 = 2γ + 1 andc′

a constant, the wavefunctions are identical (up to the normalization constant which is not
given in [16]). Hence the hydrogen atom results in [1] are consistent with those obtained
using the KG1

2 equation.
The claim is made [16] that the Dirac wavefunctions can then be obtained by

premultiplying by((2m)−1(i 6D + m14)). A somewhat tedious calculation using recurrence
relations [18] between different confluent hypergeometric functions shows that this is indeed
true. Equation (20) is a general relation linking a solution of the KG1

2 equation with a
solution of the Dirac equation. In the case of hydrogenic atoms, this projection produces
exactly the Dirac wavefunction from the corresponding KG1

2 wavefunction. This, together
with the consistency between the FV1

2 and KG1
2 wavefunctions, suggests that the solution

method in [1] combined with the procedure in section 7 is correct. It also demonstrates the
relationship between the FV12 and Dirac bound-state electron wavefunctions.

Equation (18) shows that any solution of the Dirac equation is also a solution of the
KG 1

2 equation. However, neither the solution method in section 7 nor that in [16] for the
KG 1

2 equation gives the Dirac wavefunction. This is easily seen by comparing (83) and (72)
where the KG1

2 radial wavefunction is common to all four components in (83) while the
Dirac radial wavefunction differs between the upper and lower components in (72). Thus,
it is incorrect to take the Dirac wavefunction as the KG1

2 wavefunction and rewrite it using
the method in section 5 to obtain the FV1

2 wavefunction. Rather, it is9KG1/2 given by
((2m)−1(i 6D + m14))9KG1/2 = 9D which provides the link to the FV12 wavefunction.

It was mentioned at the beginning of the solution to the hydrogen atom in [1] that the
solution method was valid also for spin-0 with only minor modifications. To obtain the spin-
0 results, all that is necessary is to replaceγ from equation (35), [1] by equation (36), [1],
and the radial functions will be analogous to equation (51), [1]. The angular functions are
obtained simply by replacing2(l,l′,j,m)(θ, φ) (equation (20), [1]) byYlm(θ, φ). Finally, the
energy spectrum is the same as that given by equation (44), [1], withγ from equation (36),
[1]. The possibility to obtain the exact spin-0 results directly from the exact spin-1

2 results is
due to the similarity ofH ′

FV1/2 andHFV0. Such a comparison is not available using the Dirac
equation. The relationship between the energy spectra of the KG0 equation and the Dirac
equation can only be given approximately in an expansion of terms of increasing powers of
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1/m (see for example, [12]). Given the similarity of the FV1
2 and FV0 equations, it could

be expected that for a number of problems the effects of the spin can be seen directly by
solving these equations in parallel.

In the general case of a Coulomb potential, any wavefunction derived using the
Feshbach–Villars linearization procedure (equations (2), (24), (46), (50)–(51)) which
involves a minimally coupled time derivative will have ar−1 term in the wavefunction,
which diverges asr → 0. However, when physical expectation values are considered using
equations (60) and (70) then it turns out that the wavefunctions are not only normalizable
but moreover the expectation value of the Coulomb energy (involvingr−1) is finite.

11. Concluding remarks

The theory of quantum mechanics is not only the Schrödinger equation, but the
equation together with an associated mathematical formalism and physical interpretation.
However, this is only an approximation and, for many problems, an equation compatible
with the special theory of relativity is required. In the spin-1

2 case, the relativistic
equation widely used is the Dirac equation. This does not mean, however, thata priori there
does not exist another spin-1

2 relativistic equation. This paper has shown that an alternative
derived in [1] (the FV1

2 equation) has two important features which distinguish it from the
Dirac equation. These are an enlarged solution space and the requirement that an indefinite
inner product is used in the associated quantum mechanical formalism.

That an alternative to the Dirac equation could mathematically exist was explained by the
use of spinor representations of the proper Lorentz group. The construction of manifestly
covariant equations using these quantities showed that, while the Dirac equation is the
natural first-order equation, there also exists a second-order equation, denoted here as the
KG 1

2 equation. The KG1
2 equation contains solutions not belonging to the Dirac equation.

The KG1
2 equation is, however, not directly compatible with the formalism of quantum

mechanics, which requires an equation in Hamiltonian form together with a suitable inner
product. Instead, the method to obtain the FV1

2 equation from the KG12 equation not only
achieves the Hamiltonian form, but is the standard mathematical procedure to write the
(indefinite) inner product in the most convenient way possible. The relativistic covariance
is preserved in the FV12 equation, albeit not in a manifest form.

While the FV1
2 equation has eight components, it has the useful property that in the

Weyl representation of the gamma matrices it decouples into two four-component equations.
Only one of these needs to be solved for problems of a single particle moving in a
(minimally coupled) classical external electromagnetic field, and from this solution the
full eight-component wavefunctions can be easily obtained. In the case of hydrogenic
atoms, it was found that the solution method was of roughly the same difficulty as the
Dirac method. Also, the bound-state eight-component wavefunctions were shown to be
consistent with the literature and the mathematical relationship between these and the Dirac
wavefunctions established. The energy spectra and angular momentum interpretation of
the states are retained. As a side benefit, the spin-0 solution can be obtained with only
minor modifications. These results show that the FV1

2 equation retains the well-established
description that the Dirac equation provides for hydrogenic atoms. However, this only
occurs for the part of the solution space where〈9 ′

FV1/2|9 ′
FV1/2〉 > 0. The other half of

the solution space is where the two distinguishing features of the FV1
2 equation manifest

themselves.
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While the mathematics to investigate the other half of the solution space using the
indefinite inner product is provided in sections 7 and 9, the actual application to hydrogenic
atoms deserves a detailed discussion and hence will be presented in a future paper. The
general viewpoint taken in the present paper is that it is necessary to first establish the
mathematical foundations of the FV1

2 equation.
This is the second of a series of papers. In the third the physical interpretation of the

full solution space using the indefinite inner product is discussed. Thereafter it will be
shown that the FV12 equation together with its indefinite inner product differs from other
developments in the literature based upon the use of the KG1

2 equation.
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