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Abstract. The eight-component relativistic wave equation for séirparticles derived in the
preceding paper is studied from a mathematical viewpoint. It is shown that it is relativistically
covariant, albeit not manifestly so. It has an enlarged solution space when compared to the
Dirac equation. A derivation of the equation in an arbitrary gamma matrix representation is
presented. Kronecker products are used to display the analogy between the eight-component
equation and the two-component spin-O equation. The linearization procedure used to obtain
the eight-component equation from the second-order %mmguation is found to have a natural
mathematical validation in the study of indefinite inner product spaces. The (relativistic) quantum
mechanical formalism for the eight-component equation is constructed. This features the use
of an indefinite inner product and some results are presented to show how the usual quantum
mechanical formalism is generalized to account for this. The reason for the decoupling of the
equation into two four-component equations in the Weyl representation of the gamma matrices
is given. It is shown that only one of the decoupled parts has to be solved for any problem of a
single particle coupled to an external electromagnetic field. Comments are made on the solution
of the hydrogen atom presented in the preceding paper.

1. Introduction

This is the second of a series of papers concerning the development of %\ iativistic

wave equation which involves the use of an indefinite inner product in the description of
its solution space. In the first paper [1] the equation, which has eight components and is in
Hamiltonian form, was derived. It was used to produce the relativistic bound-state energy
eigenvalue spectra and wavefunctions for hydrogenic atoms to show that it could be used
for a single particle minimally coupled to a classical external electromagnetic field.

This paper seeks to establish, from a mathematical viewpoint, the validity of the
equation in relativistic quantum mechanics.

Historically, the Dirac equation [2] was constructed in order to incorporate the effects
of special relativity into the formalism of non-relativistic quantum mechanics. A relativistic
wave equation in Hamiltonian form was sought which retained the probability interpretation
of quantum mechanics. The Dirac equation proved to be such an equation although the
negative energy solutions required further interpretation. The relativistic nature of the
Dirac equation can easily be seen by considering the representation theory of the Lorentz
group. The probability interpretation is one result of the mathematical formalism of quantum
mechanics, based upon the use of a Hilbert space.

In this paper, the eight-component equation is discussed using elements of the above
mentioned mathematics. It will be shown that, despite its appearance, the equation is
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relativistically covariant. It requires the use of an indefinite inner product, which is one
of two major distinguishing factors from the formalism associated with the Dirac equation.
The other is that the equation has an enlarged solution space, the dimension of which is
twice that of the Dirac solution space. It is found that there are two advantages in using
the equation as opposed to the second-order %mquation. These are its Hamiltonian
form, which allows the possibility of developing a quantum mechanical formalism, and a
very natural interpretation using considerations from the theory of indefinite inner product
spaces. A number of results are given which provide the basis for the required quantum
mechanical formalism associated to the equation.

In sectim 2 a brief summary of the results of the preceding paper is given. The
eight-component equation is hereafter referred to as thé €dlation due to its similar
form to the two-component spin-0 relativistic wave equation which we call the Feshbach—
Villars equation [3]. The F\g equation is obtained from a spéwelativistic wave equation
containing second-order derivatives in both time and space [4] (which we refer to as the
KG% equation due to its similar form to the spin-0 Klein—Gordon equation) by linearizing
only the time derivative. There is a one-to-one correspondence between solutions of the
FV% and KG% equations and the equations themselves are equivalent. Hence, by studying
the KG} equation one can obtain direct information about the, Bduation. The KG and
Dirac equations are in section 3 derived using spinors and their product representations from
which their relativistic covariance is easily seen. Thus th% feduation is also covariant
if not manifestly so. The use of spinor quantities illustrates the mathematical origins of the
Dirac and KG; equations.

In section 4 it is shown that the solution space of the %Kéquation is twice the
dimension of the solution space of the Dirac equation.

A comparison of the F‘g equation with the Feshbach-Villars equation (hereafter
referred to as the FVO equation) is given in section 5, followed by a derivation of t@e FV
equation in an arbitrary gamma matrix representation. The linearization procedure used to
derive the F\é equation is then justified in section 6 from a consideration of conserved
currents for Klein—Gordon type equations in terms of inner product spaces. It is shown that
they can be written most simply and transparently by linearizing only the time derivative
in the Klein—Gordon type equations. This provides a rationale for the process beyond
that in [3], which is applicable to both the spin-0 and séim:ases. The ny equation
is written using Kronecker products, which simplifies its interpretation and preserves the
gamma matrix algebra, which is present in any relativistic éaisequation, in a manifest
form.

A useful result of the Fg’ equation is that it decouples into two separate equations
in the Weyl representation of the gamma matrices. That this should happen is shown in
section 7 using the theory of projectors. A method is given in which only one of the
decoupled equations needs to be solved for problems of a single particle minimally coupled
to a classical external electromagnetic field and how the full eight-component wavefunctions
can easily be constructed from this.

The theory of indefinite inner product spaces is used in section 8 to construct the
guantum mechanical formalism associated to the% Fdquation. The Hamiltonian is
shown to be pseudo-Hermitian and thus plays the sablee as the ordinary quantum
mechanical Hamiltonian. The definition of the expectation value of an operator as given
in [3] is clarified. The pseudo-unitary transformations in [3] are extended to the%spin-
case and Kronecker products used to show that transformations between gamma matrix
representations take, as they must, the usual unitary form.



An eight-component relativistic wave equation Il 171

In section 9, the indefinite inner product is written in a form which takes advantage of
the decoupling of the F%/ equation.

In the preceding paper the equation was applied to hydrogenic atoms. It was seen that
the bound-state energy eigenvalue spectra obtained are identical to those from the Dirac
equation, but that the wavefunctions differ. In section 10 it is shown that the angular
wavefunctions are identical, retaining the angular momentum classification of states. The
exact relationship between the radial wavefunctions is found. Th%e Wwavefunctions are
consistent with the literature, suggesting that the solution method given in [1] and section
7 of this paper is correct. These results hold for those bound state solutions constructed so
that (¢'|¥) = +1. The other solutions will be discussed in conjunction with the physical
interpretation of the enlarged solution space using the indefinite inner product in a later
paper.

Finally, in section 11 some conclusions are presented together with an outline of
forthcoming papers.

2. The FV3 equation

In the preceding paper [1] the F%Vequation was derived. The FVO equation is obtained
from the Klein-Gordon equation (KGO equation) by linearizing the time derivative. It is in
Hamiltonian form, il%lz‘lﬂ’;:vo = HrvyoWryo, With [3]

D*(1 1 1 0
HFVO=_2m(_1 _1)+m<0 _1>+erlz (1)
Weyo = <¢> _ 1 <‘If|<eo + ml?Do‘I'KGo> @)
X V2 \ Wkeo — mtiDoWkeo )

The FV% equation was derived via an analogous linearization of th% KGuation. The
Weyl representation of the gamma matrices was chosen, where téeetmation decouples

into two two-component equations. Upon linearization two four-component equations were
obtained, these arelil,W; = H; ¥ and i’ 1,¥; = H,;¥, with

1 . .

He = (_11 _11) ® 5 (~Dy +ieo - (B +iB) +m (102 _012> +eAoly 3)
1 | |

H, = <_11 _11) ® 5 (~D?—iec - (E ~B)) +m <102 _012) +eAols ()

These two equations combine into an eight-component equation, which is (one form of) the

FV3 equation
(il1,— Hy) 0 >(\pg>_o 5
( 0 (2L —Hy))\w;) ©)

The equation 3%14\115 = H;V; was solved exactly in the presence of a minimally
coupled Coulomb potential to produce the relativistic bound-state energy eigenvalue spectra
and wavefunctions for hydrogenic atoms. The spectra are the same as those obtained using
the Dirac equation, but the wavefunctions deviate slightly due to the fact that a different
Hamiltonian is used.
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3. The KG% and Dirac equations in spinor notation

An important step in the development of the %:\équation is to show that it is indeed
relativistic. Since the F%’ equation is equivalent to the Iépequation, it suffices
to show the covariance of the @equation. This is most easily done using spinor
representations of the Lorentz Group. The %(unation is in conventional 4-vector notation
((i P)? — m?14)¥ke1/2 = 0, whereas the Dirac equation sl — m14)¥p = 0.

These equations will now be derived using quantities constructed from the spinor
irreducible representations of the proper (inhomogeneous) Lorentz group, hereafter referred
to as thepLG. The PLG is defined to contain rotations in three-dimensional space plus
Lorentz boosts. The two spinor irreducible representatiém@)(and (O,%) of the PLG are
two-component quantities and here they are labeffeadndn; [5]. The spinor equivalent

of a 4-vector is constructed from the product of two separate spgfoesid 0Ff = CLHW
and is writtenV*#. Written as a 2< 2 matrix

i VOO VOi
vl =y yu)=wtetov ©

wherev, = (vg, v) is a covariant 4-vectorV,z is obtained fromy s by spatial inversion.
P is used to denote the quantity related & by the above prescription. A minimal
coupling to a classical external electromagnetic field is introduced by the replacement

PP — P = pef — AP @)
which is the spinor equivalent of the minimal coupling
9, —> D, =29, +1ieA,. (8)

Consider a first-order partial differential equation acting on the two irreducible representa-
tions&* andng

M*fny = mé* (©)
M4, &% = mng. (10)
These are the simplest first-order manifestly covariant equations one can write. If equations
(9) and (10) are combined into a single four-component equation, one obtains the Dirac

equation in the Weyl (also known as the spinor [5] or helicity) representation of the gamma
matrices. Here, the gamma matrices take the form [6]

0 __ O 12 . O —O . 12 O
The simplest manifestly covariant second-order equations are
MM, = mP" (12)

Hdﬂ Hﬁyny = mznd. (13)
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There are two separate uncoupled equations, which transform into each other under spatial
inversion. Each equation is a second-order two-component equation. If one wants to use
these equations in relativistic quantum mechanics, (12) and (13) should be combined into one
four-component equation, as then the whole equation will be invariant under spatial inversion

as required for electromagnetic interactions. This combined four-component equation is the
KG% equation in the Weyl representation of the gamma matrices. Equations (12) and (13)

themselves are identically the equations (14), [1]¥ar. The choice ofn? for the constants

in equations (12) and (13) is justified as for free particles

n*’m,, = P*“*p;, = —9"0,8°%, (14)
and one obtains the free particle Klein—-Gordon equations for the two-component gfinors
andng, (09, +m?)1E* =0 and ("9, +m2)12n5 = 0. Using this notation it can be seen
that while the KC%1 equation decouples into two equations, it is not possible to construct a
two-component first-order equation due to the fact &t couples the two types of spinor
irreducible representations of tikeG. The decoupling of the Kéj equation occurs only in
the Weyl representation, whemkgi/2 = (6%, nB)T.

The use of spinor quantities provides a natural way to derive %p’neiativistic wave
equations of either first or second order with the correct minimal coupling. The covariance
of these equations is automatic and manifest. The method of construction via spinors shows
that the KC% equation can be derived priori, rather than only by ‘squaring’ the Dirac
equation. It is also observed that the %:\i!quation originates, not from the Dirac equation,
but from another, equally mathematically valid, relativistic wave equation. The covariance
of the KG% equation establishes the covariance of th(% Bquation. Also, the fact that the
KG% equation describes spi%vparticles means that the I%\Equation does likewise.

4. The solution spaces of the K% and Dirac equations

The Dirac equation in conventional notation is

iP—mlp)¥v =0 or i DV = mly\. (15)
‘Squaring’ (15) gives

(i P*W=m?L¥  or (i P)?—mPLy¥ =0 (16)

which is the KC% equation. It can be seen that if one started with equation (15), replaced
m by —m, and then ‘squared’ the equation, that equation (16) is again obtained.Lbe
the solution spaces of the equations

(iP+tmly)v,. =0 (17)

and F be the solution space of equation (16). Some relationships between the solution
spaces of equations (17) and (16) are listed below [7]

D,UD_CF (18)
YV_eD_ 3|\I’+ € D+ Bl \Ij+ = )/5\117 (19)
VW e FAW, €D, AW_ €D 3 =W — W, W, = 2m) L P T ml)¥ (20)

D, ND_ = {0}. (21)
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Since D, and D_ are disjoint (equation (21)), and the dimensionZaf is equal to the
dimension ofD,. (which follows from equation (19) sincg; is non-singular), the®_uUD,

has twice the dimension dd_. Thus, according to equation (18), the solution sp&ce

has dimension at least twice that of the Dirac equation solution space. It is exactly twice
because equation (20) shows ti#at U D, spansF.

The enlarged solution space of the %(@quation when compared to the Dirac equation is
a major distinguishing factor between these equations. The one-to-one correspondence
between solutions of the F%\/and KG% equations shows that the solution space of th% FV
equation is twice the dimension of the Dirac equation solution space.

Equation (18) shows that in general, rather than a Dirac solution, a linear combination
of a Dirac and a separate solution is to be considered as a solution of téeebm'ation.
Equation (19) shows that there is a one-to-one correspondence between solutions in the
spacesD_ and D,. However, equation (21) emphasizes that any solution or linear
combination of solutions irD_ is linearly independent to each and every solutiorDin.

Finally, equation (20) shows how any solution of the g«équation can be written as a
linear combination of elements @_ andD, . The solutionsV_ and W, in equation (20)
do not, however, satisfy equation (19).

5. The FV% equation in an arbitrary gamma matrix representation

In the preceding paper, the %Vequation was derived in the Weyl representation of the
gamma matrices. This has the advantage that th% éiation decouples into two separate
four-component equations in Hamiltonian form, with Hamiltonians given by equations (3)
and (4). The Hamiltonians (3) and (4) differ froiryo (1) in that they each contain
twice as many components &g and also in that they contain a term representing the
interaction of the spin with the external field. The external electromagnetic field appears
in the well known [5] relativistic combinationgE + iB) and —(FE — iB). Under spatial
inversion these complex 3-vectors interchange. These combinations are already manifest in
the second-order equations (14), [1].

The non-relativistic generalization of the spin-0 Satinger equation to the spi%1PauIi
equation [8] involves the substitution

D? - (0-D)>=D?1, +eo - B. (22)

The relativistic generalization contains not just the magnetic field, but specific combinations
of the magnetic and electric fields. The wavefunctions that the Hamiltonians (3) and (4)
act on are of similar form to (2) except that each component is multiplied by a two-
component spinor as follows. The two equations (12) and (13) each have a two-component
wavefunction (now) written a§ andn respectively. Combined together, the wavefunction
becomesW¥kgiz = (€, MT. In order to obtain the F‘g wavefunction from this four-
component wavefunction, define

Wye12 = (i) =y (ig) (23)

where  is a scalar containing everything in the wavefunction invariant under spatial
inversion. & andrjg each have two components and contain only the parts that transform into
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each other under spatial inversion. Any time dependence of the wavefunction is contained
in Y as this will not be altered under spatial inversion. Using (23) one can again define

¢> 1 (llJ+m_1iDollJ>

v = = — . . 24

(X V2 \ W —m Doy (24)

This definition is analogous to (2). The wavefunctions corresponding to (3) and (4) become
respectively

_ [ %% [ ¥no
wé_(xéo) and v = (Xn'o>' (25)

The eight-component wavefunction in equation (5) is simphy12. = (¥ ® &, ¥ ® 7o)’
and equation (5) itself can be written as

. H, 0
|3%18‘IJFV1/2 = Hrv1/2W¥rv12 Hpyip = ( 0S Hn-) (26)

Hy = (13+ i) ® <2i1(—D212 +ieo - (E + |B))) +m(r3® 1) + eAo(12 ® 1) (27a)

1
Hy = (13+ i) ® <2m(—D212 —ieoc - (E — IB))) +m(3® 1) + eAo(12 ® 1) (27b)

where ther; are the usual Pauli matrices.

The FV% equation will now be derived for an arbitrary gamma matrix representation.
Consider the K(% equation and defindg1/2 in an arbitrary representation bykgi/2 =
(o, B)T, where

(5)=+(5) e

and the gamma matrices in this representation jgfe = va’(,eleT. In analogy to
equation (23), define

Yke12 = (Z) =y (Zg) (29)

wherey is identical to thap defined by equation (23), as under a unitary transformation of
the gamma matrice$ will remain unchanged.

The wavefunction¥gy,, in the Weyl representation is given in equation (5). However,
for an arbitrary gamma matrix representation, the wavefunclien 2 = (¥ ®ao, ¥ ® Bo)”
is not convenient to display the analogous nature of thé Bvid FVO equations. The
purpose of definingp via equation (23) is to obtain a wavefunction of the fo¢ )7
multiplied by a spinor wavefunction, wher@, x)” plays as close adte as possible to
(¢, )T of the FVO equation. This makes it possible to write the equation, a conserved
current, operators and expectation values in a way analogous to the FVO equation, and
hence to develop an analogous relativistic quantum mechanics for téee&lvation. We
instead defindg,,; , = ¥ ®Wo Wherew = (ao, Bo)”. The linearization procedure involves
rewriting Wxg12 = PWo (= Y@ Yo asy is a single component object) 8., , = ¥ ® Vo.
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Note that the bispino#o remains unchanged by the linearization process,, , satisfies
an eight-component equatior LsWey1/o = Hiy1/2WEya/2, With

. 1
Hiyyp = (13 +i7) ® (Zm (—D214 + ;o“”Fw)> Fm(ts® L) +eAol, @ Ly).  (30)

Heyg is given here for comparison
. 1 s
Heyo = (13 +i72) ﬂ(_D ) ) +mz3+eApls. (31)

The only changes to the F%Vequation under a unitary transformation of the gamma matrices
are to change the*" term in the Hamiltonian (30) and the bispingg in the wavefunction.
The o™’ term is the only one that coupleg and 8y, and in the Weyl representatiait*’ is
block diagonal which allows separate equationsofpand g, to be written. These separate
equations have four components with wavefunctign® ag = ¥; and¥ ® g = ;. The
analogous nature oﬁ(ﬁvl/2 and Hryo is clear. Throughout this pape#iryi, and Hry)o
refer to the wavefunction and Hamiltonian written as in equations (3-5) wiilg , and
Hgvm refer to the wavefunctiow ® W, and the Hamiltonian given by equation (30).

The KG% equation (16) can be conveniently written as
e
("D +m?) L+ 20" Fy ) Weya(@) =0 (32)

which shows that the spin term is preserved in the Hamiltonian (30).

6. The Feshbach-Villars linearization procedure

The linearization procedure used to obtain the%FéQuation in any of its forms from the
KG% equation is analogous to that used by Feshbach and Villars [3] in the spin-0 case
and for convenience will be referred to as the Feshbach-Villars linearization procedure
regardless of whether it is applied in the séiror spin-0 case. It involves the rewriting
of a manifestly covariant, second order in the time derivative equation as a non-manifestly
covariant, first order in the time derivative equation . Why should this be useful? To answer
this question, some elements of the formalism of non-relativistic quantum mechanics are
first reviewed.

In non-relativistic quantum mechanics a system is represented by a vyetter H,
whereH is a Hilbert space [9]. In the position representation, the wavefundi@) is
a complex valued function of the real varialdeand satisfies an equation in Hamiltonian
form (the Schadinger equation),%lu(:c) = H(x)Y(x), where H(x) is the Hamiltonian
given by

2

H(z) = + eAo. (33)

This equation is obtained from the non-relativistic energy—momentum reldienp?/2m,
by the replacemenp, — id, together with a minimal coupling. To describe a system
at any timer in the future, one needs to know only and |i(zg)). The probability
interpretation of a statR]) representing a single particle is given fy|Q) = +1, which in
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the position representation becom@gly) = [ j°d*z = +1, where j = Y*(@)P(z).

An operatorQ is Hermitian if Qf = ()7 = Q, and a transformatior/ unitary if

Ut = U~1. Hermitian operators have real eigenvalues and expectation values, while unitary
transformations preserve the value(gfiy).

The definitions given above ofy), W(x), (YY), (Q), Qf, etc follow from the
mathematics of inner product spaces [9,10]. A vector spdceith an inner product
defined on it is known as an inner product spacewlfy € V, then(w|y) = (y|w)* for
vectorsw andy defined on the field of complex numbers. An operd&acts on a vector
y to give Qy € V. In general,(w|Qy) = (Q*w|y) for someQ’. If QF = Q, thenQ is
Hermitian. Ify — ¢y’ = Uy, Yy € V, then(w'|y) = (Uw|Uy) = (w|y) if Ut =U"L. U
is unitary if U* = UL,

A Hilbert spaceH is an infinite dimensional inner product space. The space
L?(—o0, +00) with representativesf (x) which are square integrable functions of some
real variablex is a Hilbert space and is the model for quantum mechanical Hilbert spaces.
With the real variabler beingx, the inner product is

<mw=/ﬁﬁmmm&m (34)

A general finite dimensional inner product space is defined(tyy) = w'Ky,
with K a Hermitian, non-singular matrix. The space is propeKifis positive definite
(w'Kw > 0 Yw, with equality only forw = 0). It is improper (indefinite) ifK is
Hermitian and non-singular but the quantity’ Kw is indefinite in sign. A more general
form of equation (34) is given by

<mm=/ﬁMmem&w (35)

Relativistic wave equations are based on the energy—momentum retetign= m?.
The first published relativistic wave equation was the KGO equation

(D" D,, + m*)Wygo(x) = 0. (36)

This equation was intended to be a wave equation analogous to thédBder equation,
retaining as much of the non-relativistic quantum mechanical formalism as possible, but
using the relativistic energy—momentum relation. Equation (36) is second order in the
time derivative and so to specify the time development of the wavefunction requires not
only |W(zo)), but also|(z)). Also, the equation is not in Hamiltonian form. Yet another
guestion appears, what happens to the Hilbert space formalism, is it possible to define an
inner product and probability interpretation for equation (36)?

The choice of the Hilbert spack out of the possible choices of inner product spaces
for non-relativistic quantum mechanics can be motivated via the existence of a conserved
current density for the Sctdinger equation. The equation

ap 90 . 1

at-f—V-j—at +V.j3=0,j"=0 (37)
is the well known equation of continuity, with = j° a density. Such an equation can be
derived for the Sclirdinger equatior(i% — H(x))Y(x) = 0 by constructing the following
guantity

.0 .0
Y () (lat - H(m)) W(x) — <<lat - H(:c)) lIJ(w)*> W(x) =0 (38)
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which can be written [11] as

0
E(UJ*(:B)UJ(SB)) +V.j=0 (39)

Hence Y*(z)Y(z) is a density and its integral over all spagap*(z)(z)d®z is just
(W), the inner product of two vectors in the quantum mechanical Hilbert splaosing
the position representation.

To search for a conserved current density for the KGO equation a similar procedure is
used [12]:

Wi oo(z) (D" Dy, + m*)Wieo(x)) — (D" Dy, + m?) Wkeo(x))* Wkeo(x) = 0. (40)

This can also be written in the form of equation (37}, is given by

~L=
Jkgo = m~Hi(Wigo(@) D" Wygo(x))
= m i (WEgo(®) D Wigo(®) — (D" Wkao(@))* Wkeo()). (41)

This method of deriving the conserved current density is analogous to the method of
non-relativistic quantum mechanics (equation (38)), even though equation (36) is not in
Hamiltonian form. One is seeking to find an equati* = 0, with j# transforming as
a 4-vector. j* given by equation (41) clearly transforms in the correct manner. This is a
derivation from quantum mechanics, not field theory, however, in any case the conserved
current derived using the Lagrangian formalism for fields matches the one derived using
the formalism of quantum mechanics.

The zeroth component gf* given by equation (41) is not positive definite. This was
recognized immediately when the KGO equation was initially published indicatingjthat
is something more than a probability density. This is mentioned in almost every textbook
on relativistic quantum mechanics and it is often stated that the equation should also be first
order in the time derivative. However, the fact that the Hilbert space formalism is also lost
seems to be given less explicit attention. It is not possible to writg,, d*z in the form
(Wkeol¥keo) = \IJIEGO(:B)K Yyeo(z) d®z as jds, contains not only the quantitYxkeo(z),
but alsoDWygo(x), being

oo = mli(Wigo(z) DPWieo(x) — (D°Wkao())* Wkeo(T)). (42)

Dirac’s equation in 1928 [2] was an attempt to regain the ‘lost’ formalism of quantum
mechanics using a relativistic wave equation. It was a linear equation related to the KGO
equation that had the following advantages: (i) it was a first order in the time derivative
equation in Hamiltonian form, hence the important time development of the wavefunction
was regained; (ii) there existed an inner product formalism based upon a 4-component vector
|Wp) in a Hilbert space with

(Wp|Wp) = / Vi@ Kvp@ bz K=1 (43)

(i) the inner product was positive definite which at the time agreed with the interpretations
of experiments; (iv) the equation explained the ‘spin’ of the electron and the hydrogen atom
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spectrum. However, the negative energy states signalled the need for a deeper understanding
of the situation.

In this work the motivations of Dirac are altered [1] only in that an indefinite inner
product similar to that in [3] is desired, together with a relativistic sipiequation that
resembles that given in [3]. Given that an equation in Hamiltonian form is sought,
some linearization procedure must be applied to the original quadratic relativistic energy—
momentum relatiorp* p,, = m?.

Reconsider the zeroth component of the Klein—Gordon current given in equation (42).
This involves the product of D°Wygo(x))* with Wyeo(x), and the product ofl{ ()
with  (D%Wkgo(x)). To write this in the form of an inner product given by
equation (35) above, consider (the position representative of) a new VACOr =
(Wkeo(x), (m~LiD®)Wyeo(x))T, instead oflygo(x). Then

%0 =A@ EA@  with K = <2 é) . (44)
Hence (AIA) = [ jdso®z = [A(@)'KX(z)dz as required. Observe thafy, is
indefinite [10]. What sort of equation does(x) satisfy? Mathematically, the answer
is simple. Given a second-order ordinary differential equation for some quahtittycan
be written as two first-order equations, far and X [13]. Hence there appears a two-
component equation for the new wavefunctidie) = (Wkgo(x), (mLiDO) Wreo(x))”.
This is a promising candidate for a relativistic wave equation for spin-0 particles, but from
the theory of indefinite inner product spaces [10] it is known that the most convenient form
of K is a diagonal matrix, and an indefinite (also Hermitian and non-sing&lacan always
be rotated to diagonal form via a conjunctive transformation. Hence dkfine= SO (x),
with

S=\/1§<1 _11). (45)

A new inner product is obtained, with matrix

, / 1 0
K' =S'KS K_(O _1)
1 ((@+ mtiD%)Wkeo(x)
°@= "1 ((1 - (m—liD°)>wKeo<m)> ' (46)
O(x) is preciselyWryo(x). Hence the natural mathematical construction of an inner product
space based upon the conserved current of the KGO equation leads to the FVO equation. It
is evident that this construction is just the Feshbach-Villars linearization procedure.

The Feshbach-Villars linearization procedure has been justified for spin-0 particles. In
the spin% case, one must start with the Ié(équation. The conserved current density for the
KG% equation is derived in a similar manner to that for the KGO equation (equation (40)),
with an additional consideration to ensure thiéttransforms correctly.

Consider a manifestly covariant wave equation of the fafii(z) = 0, where F
contains a mass term multiplied by the identity matrix and also derivative terms multiplied
by matrices. Note that equations (15)—(17) are of this form. An equation of the form
d,j" = 0 is sought, and), j* is a scalar. An inner product formalism requir@sy) =
[ %z = [yi(z)KY(z) dz, i.e. j° being the product of some vector with the complex
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conjugate transpose of the same vector and a non-singular Hermitian matrix sandwiched
in the middle. Hence it is natural to form the quantitig§x) multiplied by Fyi(x), and
(Fy(x))" multiplied by yi(x). In order to obtain products which transform as scalars, in the
spin- case a matrix\ is inserted to givep'(z) A F(x) and (FY(x))' A(x). These will
transform as scalars i’ () AP (x) transforms as a scalar. The sum or difference of these
products is then taken (which removes the mass terms) in order to form the divergence of a 4-
vector. One must check that indeed transforms as a 4-vector, which is trivial if one knows
how Y (x) transforms. The KGO conserved current density given by equation (41) transforms
as a 4-vector, a¥kgo(x) is a scalar. Heré\ = 1. The Dirac equation haB =i D —m1,,
and A = y°. The quantityW},(z) A F¥p(x) is simply Wi (z)(i 2 14 — Hp)¥p(x), with the
Dirac HamiltonianHp given in [12]. Thus, the relativistic procedure discussed here reduces
for the Dirac equation to the same method (equation (38)) used to derive the conserved
current density for the Scbdinger equation.

In the KG% caseA is againy®, asWgg1,2(x) is also a bispinor. Using equation (32)
for the KG% equation, construct the quantity

e
‘Piel/z(w)yo((D"D,L +m?)1, + EG“UFM)‘IJKel/z(w)

T
- (((D“DM +m?) 1y + ga‘wa> ‘IJKG1/2(33)) ¥ WG12(z) = 0. (47)

This can be written ag, j* = 0, with

N ~ =
Jke12 = mfli(‘l"kel/z(w))’o D" Wyg1/2(x))
= m Y (Wl @)y O D" War2(@) — (D" Wor2(@) Y Wker2(@).  (48)

The definitionWkgo = Y¥o = P ® Vg given in section 5 can now be used to conveniently
define the F\J inner product. With this definitionids, , becomes

L=y
Je1j2 = m YW (@) D° () (Po(x) Wo(x)). (49)

To obtain an inner product in the standard form (35) the Feshbach-Villars linearization
procedure is applied to the Iépequation. Construct

_ Wke1/2(x) . W(x)
M) = <(m—1iD°>wKe1/z(m>) = ((m-liD°>w<ac>) ®Wo@ (50

and perform the same conjunctive transformation as in equation (46) to obtain
A12(x) = 81/2012() = (S ® 14)O12() (51)

with S given by equation (45) as before. The inner productXem(x)

(Arj2lA1/2) = / Ao @ K1 o) dz = / A (@) KX(@)(Wo(@) Vo) Pz (52)

is given by

0 1
K1/2:K®)/0:(1 0)@)/0 (53)
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while for ©1/2(x)

, . 1 O
K=K @y = (O _1) ® (54)

©12(z) is precisely the FY wavefunctionW,, »(x) = ¥ ® Vo and

(©1/2101/2) = (Vyy 2| Wrva o) = / ‘I’gvl/z(ﬂ?)Ki/z‘l’,Fv1/2($) d’x

= / V(@) K'¥ () (Vo(x) Vo(x)) bz (55)

defines the inner product for the I%\.équation.

The Feshbach-Villars linearization procedure has been shown to be a natural
mathematical procedure which can be applied to the%l@auation as well as the KGO
equation.

Equations (49)-(51) clearly show that the procedure preserves the mathematically
convenient bispinor in the wavefunction.

It is evident from the above discussion that the%Funation has a useful advantage
over the KG% equation in that the F\y inner product assumes the standard mathematical
form. This, combined with the fact that only the %\Equation is in Hamiltonian form,
indicates that the F%’equation is the preferred equation when the contruction of a relativistic
guantum mechanics is considered.

7. The eight-component equation decoupled

In the Weyl representation of the gamma matrices th% Equation decouples into two
separate equations, as mentioned above. This can be seen, as discussed in section 3, due
to the possibility of forming a second-order relativistically invariant equation using only
one of the two spinor irreducible representations. Alternatively, it can be understood by
considering the matriys.

Consider equations (16) and (17) given in section 4. For convenience, define the matrix
A =i /m, write equation (16) agéA%—13)¥ = 0 and equations (17) &A +1,) V. = 0.
Let D3 andD, be the subspaces of solutions of the %(equation defined by

V3 e D;, W3 = %(14 + )W Wy €Dy, Wy= %(14 — ys)W. (56)

Thus W3 and ¥, are linear combinations of ng solutions. D3 and D4 together form a
decomposition ofF. W3 and ¥, are eigenstates ofi? with eigenvalue +1 (solutions of
equation (16)) . All elements dP; (respectivelyD,) are eigenvectors afs with eigenvalue
+1 (respectively —1). Hencgs decomposes into D3 andD,4. The existence of invariant
subspaces ofs requires a basis in whicks and the projector%(lzl + ys) are block
diagonal. In this basis the vectdrs (respectivelyw,) has the lower (respectively upper)
two components zero. Since bots and W, are eigenvectors ofA?, then in this basis
A? must also be block diagonal and hence the%Kéﬂuation (and thus the F%Vequation)
decouples into two parts. Note that elementsof and D, are not eigenvectors gk, so

a similar result does not follow for the Dirac equation.
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The decoupling raises the possibility of using only one of the decoupled equations for
calculations. In fact this was done already for hydrogenic atoms in [1]. There, however, the
calculation was only carried far enough to obtain the four-component wavefungtiai
one of the decoupled equations. In section 10, the eight-component wavefungtigns
are obtained for the part of the solution space describing the bound electron states. In the
rest of this section, a general procedure to obtain the full solution spack-{ay, will be
outlined.

The decoupling of the Fy equation occurs when it is written as in equation (5). It
does not matter which of the decoupled equations is used for calculations, but we shall
always choose the upper equatic(hgf(lzl — H:)W: = 0) for consistency. Given a solution
W of the upper half of equation (5), the solutidn, of the lower half is simple to obtain
via spatial inversion. Then it is necessary to combine the two solutions with an appropriate
factor & to form the eight-component wavefunctiobey1, = (W, é‘slllf,)T. The point
of the factor is the following. The operatgs commutes with the K% equation. This
corresponds to the commutativity df® ys with H,, , (equation (30)). Specializing to the
Weyl representation of the gamma matrices wheres given by equation (11), and writing
the FV% equation as equation (5) to take advantage of the decoupling, leads to the result
that if (Wg, ;)" is a solution of equation (5), then so(¥:, —¥;)”. Both these solutions
have the same eigenvalde Since a linear combination is also a solution with eigenvalue
E, then, in general(¥;, €°¥,)7 is a solution of equation (5), also with eigenvalBe In
describing the solution space a linearly independent set of solutions is desired and thus two
and only two choices of are necessary.

To decide which two values df should be used, one only has to consider hbyvis
obtained from¥;. All the quantities in the wavefunctiow; are simply replaced by their
corresponding spatially inverted counterparts. Clearly, the same must be done in going from
W, to W;. The process; — W; — U is the identity and so% = +1. Therefore§ = 0
and$d = z. In an arbitrary gamma matrix representation she- 7 solution is obtained
from the § = 0 solution by the premultiplication obg by ys.

After the two solutions are obtained they have to be normalized. The value of
the normalization integral of thé = =z solution is always opposite in sign to that
of the § = 0 solution. As discussed in the next section, for a given solution, the
normalization process itself cannot change the sign of the normalization integral. For
square-integrable states, a solution widhy1/2|Wry1/2) > 0 can be ‘maximally’ (see next
Section) normalized to giveI/,:Vl/2|\If,:Vl/2) = +1, while a solution WitHWFV1/2|lI'[FVl/2> <
0 can be ‘maximally’ normalized to giveWgry1/2|Wrv12) = —1. In the case of
continuum states where the wavefunction is not square-integrable, the normalization takes
the form <‘I'FV1/2 E|“I"FV1/2E’> = 45(E — E/) for a (wFVl/2|\IlFV1/2> > 0 solution and
(Wrvi2 £lWrv12p) = —8(E — E') for a (Weyv1/2|Wrv1/2) < O solution.

It is in general not true that th& = O states are the ones Witlry12|Wryv12) > 0.
However, an eigenVECtO}’FVl/z of HFV1/2 with eigenvalueE >0 and(\IJ,:Vl/2|\I/|:Vl/2) >0
is a state with charge and positive energy which describes the usual ‘particle’ state and
reduces in the non-relativistic limit to the usual Sitinger state. The chargeis seen in
the minimal couplingd, — 9, +ieA,.

After the eight-component solutions are obtained and maximally normalized, their
physical interpretation can be discussed. The procedure outlined in this section for
constructingWeyy2 from W clearly holds for any problem in which a classical external
electromagnetic field is introduced via a minimal coupling.
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8. The associated quantum mechanical formalism for the F%’ equation

Feshbach and Villars [3] give some results to develop a quantum mechanical for-
malism for the FVO equation using the indefinite inner prodydtpyo|WYrvo) =
i \IJI];VO(CC)‘L’g‘-I—’F\/o(m) d3z. The presence of the matrik’ = 73 leads to a modified defini-
tion of @ in section 6, namely (usings = rg = r3‘1) QF = 13Q113, whereas for the unitary
inner product it is given by2? = Q. In general, the matri in (35) must be non-singular
and Hermitian [10] and this is the case for bdiff = 73 and K , = 74 in (54). Consider
now the spin% case, where, = rl = r;l. A operator is pseudo-Hermitian Q4 = Q
and a transformatiod/ is pseudo-unitary ifrsUftq = UL Hgy,, is easily shown to be
pseudo-Hermitian by using properties of the Kronecker prodacp B)! = AT ® Bt and
(A® B)(C® D) = (AC) ® (BD) which are valid here as the elements of the matxiare
c-numbers, and the dimensions of the matrices appropriate.

, o 1 f
T4HFJ(/1/2‘[4 = (3(13 4 i12) 13) ® (VO <2m (—D214 + ;UwFuv>> 7/0>
+m* (i ta) ® (¥°(L) 1) + (eA0)* (13(12) 13) ® (¥°(La)'y0) (57)

which equalsHyy,,, aso"’t = y%"'y® andm, e and Ao are real. HenceH(, ,
(analogously toHrvo) plays the dle of the time transformation operatotfr,, , has a
complete set of orthogonal eigenfunctions, as will be shown in a later paper. These are
obtained simply by solving the equatioH:¥: = EW; and then constructing the full
FV% wavefunctions using the method given in the previous section §ith0 ands =
respectively. Thus a quantum mechanical formalism similar to that for the FVO equation [3]
can be developed, for exampld$2/dt) = %(Q). The velocity operator for free particles
is given byuv, = (pr/m)((t3 + it2) ® 14) Which is closely related to the velocity operator
of the FVO equationy = (pr/m)(t3 + it2) [3].

In non-relativistic quantum mechanics the expectation value of an opé&eamdefined
by (Q) = ([ V*(z)Q(z)¥(z) d®z) /([ ¥*(z)¥(z) d®z). The definition given in [3] for
the FVO equation

Q) = / Wl o (@) 3R (@) Wryo () & (58)

clearly holds only for normalized wavefunctions and implies, given the indefinite inner
product,

_ [ Y@ 52 @) Yevo(@) i

(Q -
| [ Whyo(@) 3Wpvo(x) d3z|

(59)

in the general case. Equation (59) must also be used for plane waves and other solutions
which are not square-integrable. While the definition (58) is always used in discussions
of the FVO equation both in [3] and in textbooks (see for example [14]), and a consistent
interpretation requires this, some mathematical justification from the theory of indefinite
inner product spaces is helpful. This is found in the normalization of vectors that have
(W|Y) < O (see chapter IX of [10]). There it is shown that the most that can be done is
to ‘maximally normalize’ such vectors, which means dividing, not{tW) as in the case
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of positive definite inner products, but By|y)|. Thus follows the definition given by
equation (59). For the F%/equation it becomes

f \I’{:V]_/Z]L (CE)"’-4S-2 (w)“l’,/:\/l/z(il:) d3$

e (60)
‘f ‘I’Fv1/2| (93)74‘I’|/:v1/2(m) Bz

(Q)pvie =

From the FV% Hamiltonian (30) it is clear that the spin tet” F,, in (32) is not broken
by the Feshbach-Villars linearization procedure in an arbitrary gamma matrix representation.
Corresponding to this the bispinor is preserved in the wavefunction. The gamma matrix
algebra together with its unitary transformations among representations is thus retained. In
general, however, a transformation which preserves the valu@gf, ,|\We, ,) for any
|Wtyy,0) is pseudo-unitary wittr,U'z, = U~ The matrixzy = 13 ® y° and it is thers
which makes the transformation pseudo-unitary analogous to the spin-0 case. If we consider
a change of the gamma matrix representation according to the usual unitary transformations,
this acts only on the bispinor paity of Wry12 = ¥ ® o, and clearly also preserves the
inner product with j,?Vl/z(:c) = \D/F\,l/;(w)uqﬂwl/z(m) = (UT(x)13¥ () (Yo () Wo(x)),
because bilinear covariants are invariant under such transformations. In section 6 it was
mentioned that the ideal form of an indefinite inner product is a diagonal matrix (with 1s and
—1s on the diagonal), = 13®y? is block diagonal. However, the? is clearly understood
to be due to the gamma matrix algebra present in any correct relativistic%apmmation,
and thers part of r4 is of the desired diagonal form diag(+1, —1). The identity operator for
the FV} equation isy_, 0i|Wey1)2) (Wey 21, Whereo; = 1 if (Wryg o [Weyg o) = £1.

9. The use of Kronecker products for the FV% equation

There are two distinct yet equivalent ways of writing the%Fla’quation using Kronecker
products. The first takes advantage of the decoupling of the equation in the Weyl
representation of the gamma matrices, while the second preserves the bispinor in%the FV
wavefunction. Consider the first case where théZ Fvavefunction is

\IJFV1/2=<$§7>=<$§§.2>. (61)

This was used in equations (23) to (27) to define the linearization procedure for the two
decoupled parts of the Kgsequation in the Weyl representation of the gamma matrices.
The FV% inner product defined via equation (54) is valid for the second case with
Yeyi2 = ¥ @ W, rather than for equation (61). If equation (61) is used, the inner product
becomes

(Wrvi2|Wrviy2) = / \p;\/l/z(w)TS‘lJFVl/Z(w) iz (62)
0 0 L O
o o o -1]|_
=11, 0 o0 o |=™ ® (130 Ly). (63)
0O -1, O 0
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Note thatrs is non-singular and Hermitian as required [10]. With this valuespf
(Wrvijo| Prvis2) = / (V1 (@) 13% (@) (E§ (@)1io(®@) + rio| (@)éo(@)) . (64)

Consider now the method to obtain the £ifner product containings from fj,?Gl/z bz,
where

-~
JRe12 = m Hi(Wigy p@)y° D° Wyg1y2(w). (65)

To constructWryy,» given by equation (61), firstly the bispindrkgi/. is split into & and
i (see equation (23)), heng€ in equation (65) is split inta; ® 1, (¥° = 71 ® 1 in the
Weyl representation of the gamma matrices). Then

(6 _ (v _ (wek
WKGl/Z‘(ﬁ)‘(wﬁo)‘(wmo) (66)

is rewritten using the linearization procedure ¥sy1,2 = (¥ ® &, ¥V ® io)Y. Hence
1n1®1 — 11 ®(13® 1) = 15. In general, the linearization procedure takef’ @ontaining
a derivative term for a second-order equation and replaces the derivativerpyoa a
first-order (in the time derivative) equation with twice the number of components. In the
spin% case, it is necessary to writg together withy® in a convenient fashion.

If instead the KC% equation is written in an arbitrary gamma matrix representation and
the linearization procedure applied directly, then this corresponds to the second case with
the FV} wavefunction defined bWEy 1 2(2) = ¥ ® Yo and

("IJI/:Vl/2|\y|,:Vl/2) = / ‘l'gw/z(m)m‘l’évuz(m) &’z (67)

wherez, is Ki/z defined by equation (54). Specializing to the Weyl representation of the
gamma matrices for comparison purposes, this becomes

0 b O 0
I, 0 O 0
0O 0 0 -1,
0O 0 -1, O

T4 = =13® ch\’/ey| =13 ® (11 ® Lp). (68)

Here the bispinor is not split s¢° remains itself inty. Equation (67) in the Weyl
representation of the gamma matrices gives of course exactly the right-hand side of
equation (64).

Consider what happens if an attempt is made to defivie an arbitrary gamma matrix
representation. Here, is 13 ® y°. If it is possible thaty® can be written ag°® = 6 ® 17,
wherets andz reflect the splitting of the bispinobkg1,2 into («, B)” (equation (29)), then
one could derives = 15® (13® 7). Only in the Weyl representation of the gamma matrices
is it convenient to do this. Both methods obviously give the same fibgl) as both inner
products are derived from the sarm%el/z. To obtain the wavefunctions in the two cases
from each other, one only needs to knéyy o andW. In general, the quantum mechanical
formalism can be developed for either of the two ways of writing th(% féduation using
Kronecker products. They are equivalent to one another. Convenience dictates which is
chosen in a given situation.
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While the use of Kronecker products is convenient, some care must be taken when
operators are involved. For example, equation (30) for the Familtonian Hiy,)p iN
an arbitrary gamma matrix representation contains the (@gm- i) ® (—D?14/(2m)).
When acting on the wavefunctiotry,,, , = ¥ ® Wo, the operatorD? of course acts on
the = dependent parts in the whole wavefunction, not just thos&gn Strictly speaking,
the term should be written as-D?/(2m))((t3 + i12) ® 14), but this is messy when added
to the term(rz + it2) ® (e’ F,,,/(4m)) which itself is correct (but could be written as
(eF,,/(4m))((t3 + i) ® 0*)). In all cases in this series of papers, the use of Kronecker
products to write a & 8 matrix M as A ® B where A and B are 2x 2 and 4x 4 matrices
respectively is rigorously correct, as are the definitions of the wavefunciioims(24) and
Ay/2(x) in (50) (there is no time dependencedg). For convenience, however, sometimes
a scalar (in the eight-dimensional space) operatwiill be placed inM as A ® (sB) or
(sA) ® B or A® (Bs) or (As) ® B, instead ofs(A ® B). These comments also apply
to the Weyl representation of the gamma matrices, wherexatdmatrix is written as the
Kronecker product of X 2 matrices.

10. The hydrogen atom

The solution to the hydrogen atom was discussed at length in the first paper to suggest that
the FV% equation can be used successfully for problems of a single particle moving in a
classical external electromagnetic field. It was seen there that only one of the two equations
is necessary to obtain the eigenvalue spectrum and four-component wavefutdgtionise
full FV% wavefunction¥ryy,> requires bothb; andw;, together with a choice of the factor
e?, OnceWryy,2 is constructed, then the quantum mechanical formalism with the indefinite
inner product can be used to analyse the solutions.

SinceV; is obtained from¥; by spatial inversion, the radial wavefunctions fby must
be identical to those of; and the angular wavefunctions must change by a sign wfth «
defined by equation (21), [1]. The differencexrcan be traced back to the angular operator
Q in the preceding paper whef@: = L?1, — iZao - # becomes?, = L?1, +iZao - 7
due to the sign change of tle- E term in the Hamiltonian£2; has the same eigenvalues
as ; leading to the same radial equations and hence energy spectrum.

To normalize the wavefunctions one can use eitbigy12 = (e, W;)" or Wiy, , =
v ® Wy, as described in the previous section. For the hydrogen atom one has

_ [ ®) _( % \_{( Ouwurjm:@.¢) \_( ©
V= (x(r)) o= (9'8’7'0) B (éa@a,lzj,mm(ﬁ’s 45)) <é‘s@r‘z>' (69)

In the bound-state case, choosidg = 0 leads to (W, ,[Vr,,) > 0, where
(Wevi2l Wrvi o) €Quals

f(\p*zg\p)@o%) ddz :/rzdr(|¢(r)|2— |X(r)|2)//sine do dp(©0, + ©]6;). (70)

Since (Wryy 5/ WEyy/2) > 0 and the bound-state solutions are normalizable, the integral in
equation (70) is set equal to1, which provides the values of the normalization constants

C and C’ mentioned in equation (52) of the preceding paper. It is of course possible to
define only one normalization constant, but for convenieficis defined so that the angular



An eight-component relativistic wave equation Il 187

integral equalst1, and thenC used to normalize the radial integral 46l. The values of
C andC’ are

AT @y+n+ D)
TRy +2VZn = D!

For these statestHf,,,) = +E and so they are interpreted as the usual positive energy
electrons with chargete) bound in the attractive nuclear potential of chargeZ¢). There
is a one-to-one correspondence between these solutions and the Dirac bound-state spectrum.

There are also continuum solutions of the }vquation, which can be obtained in
analogy to the method for the Dirac equation presented in [5]. This amounts to replacing
|A| (equation (28), [1]) by—iA, A € %, which is necessary as noyE| > «~2, and
reconsidering the normalization of the wavefunctions. Whes o2, the § = 0 solutions
correspond to the positive energy continuum electron solutions of the Dirac equation. When
E < —a~2, the§ = & solutions correspond to the negative energy continuum electron
solutions of the Dirac equation.

The three sets of solutions discussed above (continuum electrons of both positive and
negative energy and bound electrons) exhaust the possible solutions of the Dirac equation.
However, they cover only one half of the %Vsolution space and the other half has yet
to be discussed. For each solution of the Dirac equation with eigenvgltieere are two
linearly independent solutions of the %\équation having the same eigenvalkie In the
above,s has been chosen to obtain the solution which corresponds physically to the Dirac
solution. The other choice @fand the physical interpretation it leads to will be considered
in a later paper.

It was mentioned in the preceding paper that the values’ aind y differ for the
Jj =1+ 3 cases using the two equations. Heyey12 = yo — 1 andnpy, , = np, + 1. The
sumy +n’ is the same for both equations for a given state, as could be expected. Moreover,
the physical interpretation of a given state is identical. The deviation is an artifact of the
different radial wavefunctions for the two equations, the correspondence of which will now
be discussed.

The wavefunctions derived in the preceding paper can be compared with the Dirac
wavefunctions [15] which are (using the standard representation of the gamma matrices)

C' = (21— k). (71)

_( &V}

Ypjm = <if(r)y[;7j> 72
1 —ADT

for)=_"~1-ee™(¢1—¢2) (73)
1

§(0) = VIt ee ™ 1+ o) (74)

Za -1z
¢1 = —cn’ (m — x> (2rpr)’ F(1—n', 2y +1; (2kpr)) (75)
o +1/2
p2=c (m - X> (2pr)" F(=n', 2y +1; (2hpr) (76)

wherey = +(j + %) forl=j+ %; Ap = |A] andc is a normalization constant.
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The FV% wavefunctions were derived in the Weyl representation of the gamma matrices,
whereas the Dirac wavefunctions are given in the standard representation. In general, the
Dirac wavefunctions for a central field problem will be of the form given on page 54, [12]

+ m - m
8 (r)y1'+g'(r)y[r' )
Ypim=|." S0 I 77

o/ <u;+(r>y,";+|ﬁ OV (77

The standard representation of the gamma matrices has the bispinor given by

()=o) e ali ) ™

Under spatial inversiony and 8 transform into themselves (multiplied by opposite phases)
and hence this requires eithgjf org; to be zero (and corresponding}g‘ or fj+ to be
zero), which gives the form of equation (72). In the Weyl representation of the gamma
matrices,&é and 5 transform into each other, and so bol)g? and Yy'; must be included

in each part of the wavefunction. If the I%\ANavefunction is transformed to the standard
representation, then this involves only the applicatior§ & S~1) to Wy. This gives

! lj
Wy =20, (ikyj{f’,) (79)
which shows that, in the same gamma matrix representation, the angular eigenfunctions are
identical. Thus the well established classification of states in terms of angular momentum
is preserved.

The radial wavefunctions differ in the confluent hypergeometric functions used. The
FV% equation has only one confluent hypergeometric function for a given state, however
this is multiplied by a simple polynomial of the form 4 m~1tiD°, with D° containing
ar~! piece from theA® term. On the other hand, the Dirac wavefunction has a linear
combination of two confluent hypergeometric functions.

In understanding the F%/wavefunctions, it is useful to compare them to those obtained
using the K% equation [16]. In [16] one half of the KE[E equation is used to derive the
solutions, the equation faj. A single second-order radial equation is obtained, which is
written in the form of a differential equation for the confluent hypergeometric function. The
eigenvalue spectrum and wavefunctions are then derived by analogy with thidBger
radial equation. The wavefunctions are not normalized, as no inner product or fl%” KG
wavefunction is defined.

The energy eigenvalue spectra derived in [16] are identical to those using @@ﬁv
Dirac) equation. It will now be shown that the I%\ﬂvavefunctions are consistent with those
obtained in [16]. To do this, a connection must be made between the notation in [16] and
in [1]. The symbols in [16] are given an AB subscript, and they use units wherd = c,
and E andr are in ordinary units. The following relations exist

Ze
Yap = Za AaB = m =n'+ )4 PAB = P Sap = Vspin0 (80)
iI(,'7
S1AB = Yspiny2 Xeap = (kj = —Kg). (81)

The solution method in [16] begins with the standard representation of the gamma matrices
and then after some algebra thesolution is obtained. The angular functions in [16] are
identical to®;;.
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Now consider the radial wavefunctions of the %:‘équation. They can be written as

1

<f(r)> = ClAle ™Al F(L—n', 2y +2;2|Alr)
.

g(r)
1+ a?(E+2Z)r)
x (1—a2(E+Z/r)>‘ (82)

The factors ¥ o?(E + Z/r) are simply =m~tiD®. Hence, given howv is derived from
Y (equation (24)), one then expects the radial wavefunction derived in [16] to be

}h(r) = 1 }(f(r) +g(r) = V2C|A| €M IAIF) F(A =1, 2y + 2; 2|Alr). (83)
r J2r

The radial wavefunctions given in [16] are
VE(p) = eP2pS L4 (p). (84)

With p = 2|A|r, LE(p) = CF(—=B,a+1p) [17], A — S+ =n,25.+1=2y +1 andc

a constant, the wavefunctions are identical (up to the normalization constant which is not
given in [16]). Hence the hydrogen atom results in [1] are consistent with those obtained
using the KG; equation.

The claim is made [16] that the Dirac wavefunctions can then be obtained by
premultiplying by ((2m)~%(i p + m14)). A somewhat tedious calculation using recurrence
relations [18] between different confluent hypergeometric functions shows that this is indeed
true. Equation (20) is a general relation linking a solution of the%Kéﬂuation with a
solution of the Dirac equation. In the case of hydrogenic atoms, this projection produces
exactly the Dirac wavefunction from the corresponding %(@avefunction. This, together
with the consistency between the g\and KG% wavefunctions, suggests that the solution
method in [1] combined with the procedure in section 7 is correct. It also demonstrates the
relationship between the F%Vand Dirac bound-state electron wavefunctions.

Equation (18) shows that any solution of the Dirac equation is also a solution of the
KG% equation. However, neither the solution method in section 7 nor that in [16] for the
KG% equation gives the Dirac wavefunction. This is easily seen by comparing (83) and (72)
where the K% radial wavefunction is common to all four components in (83) while the
Dirac radial wavefunction differs between the upper and lower components in (72). Thus,
it is incorrect to take the Dirac wavefunction as the %(@avefunction and rewrite it using
the method in section 5 to obtain the %\Wavefunction. Rather, it isbkg12 given by
(2m)7L( P + mls))Wke12 = Wp which provides the link to the F%/wavefunction.

It was mentioned at the beginning of the solution to the hydrogen atom in [1] that the
solution method was valid also for spin-0 with only minor modifications. To obtain the spin-
0 results, all that is necessary is to replacéom equation (35), [1] by equation (36), [1],
and the radial functions will be analogous to equation (51), [1]. The angular functions are
obtained simply by replacin® . ;.. (@, ¢) (equation (20), [1]) by}, (0, ¢). Finally, the
energy spectrum is the same as that given by equation (44), [1]witbm equation (36),

[1]. The possibility to obtain the exact spin-0 results directly from the exact%p«'ﬂ;«ults is

due to the similarity offff,, , and Hrvo. Such a comparison is not available using the Dirac
equation. The relationship between the energy spectra of the KGO equation and the Dirac
equation can only be given approximately in an expansion of terms of increasing powers of
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1/m (see for example, [12]). Given the similarity of the %\and FVO equations, it could
be expected that for a number of problems the effects of the spin can be seen directly by
solving these equations in parallel.

In the general case of a Coulomb potential, any wavefunction derived using the
Feshbach-Villars linearization procedure (equations (2), (24), (46), (50)—(51)) which
involves a minimally coupled time derivative will havera® term in the wavefunction,
which diverges ag — 0. However, when physical expectation values are considered using
equations (60) and (70) then it turns out that the wavefunctions are not only normalizable
but moreover the expectation value of the Coulomb energy (involwirty is finite.

11. Concluding remarks

The theory of quantum mechanics is not only the 8dimger equation, but the
equation together with an associated mathematical formalism and physical interpretation.
However, this is only an approximation and, for many problems, an equation compatible
with the special theory of relativity is required. In the séinease, the relativistic
equation widely used is the Dirac equation. This does not mean, howeves,ghati there

does not exist another sp%welativistic equation. This paper has shown that an alternative
derived in [1] (the F\é equation) has two important features which distinguish it from the
Dirac equation. These are an enlarged solution space and the requirement that an indefinite
inner product is used in the associated quantum mechanical formalism.

That an alternative to the Dirac equation could mathematically exist was explained by the
use of spinor representations of the proper Lorentz group. The construction of manifestly
covariant equations using these gquantities showed that, while the Dirac equation is the
natural first-order equation, there also exists a second-order equation, denoted here as the
KG% equation. The K% equation contains solutions not belonging to the Dirac equation.
The KG% equation is, however, not directly compatible with the formalism of quantum
mechanics, which requires an equation in Hamiltonian form together with a suitable inner
product. Instead, the method to obtain the%FMquation from the K% equation not only
achieves the Hamiltonian form, but is the standard mathematical procedure to write the
(indefinite) inner product in the most convenient way possible. The relativistic covariance
is preserved in the F%/ equation, albeit not in a manifest form.

While the FV% equation has eight components, it has the useful property that in the
Weyl representation of the gamma matrices it decouples into two four-component equations.
Only one of these needs to be solved for problems of a single particle moving in a
(minimally coupled) classical external electromagnetic field, and from this solution the
full eight-component wavefunctions can be easily obtained. In the case of hydrogenic
atoms, it was found that the solution method was of roughly the same difficulty as the
Dirac method. Also, the bound-state eight-component wavefunctions were shown to be
consistent with the literature and the mathematical relationship between these and the Dirac
wavefunctions established. The energy spectra and angular momentum interpretation of
the states are retained. As a side benefit, the spin-0 solution can be obtained with only
minor modifications. These results show that the%Fequation retains the well-established
description that the Dirac equation provides for hydrogenic atoms. However, this only
occurs for the part of the solution space wheve.; ,|Wry,,,) > 0. The other half of
the solution space is where the two distinguishing features of th% &Qation manifest
themselves.
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While the mathematics to investigate the other half of the solution space using the
indefinite inner product is provided in sections 7 and 9, the actual application to hydrogenic
atoms deserves a detailed discussion and hence will be presented in a future paper. The
general viewpoint taken in the present paper is that it is necessary to first establish the
mathematical foundations of the %\bquation.

This is the second of a series of papers. In the third the physical interpretation of the
full solution space using the indefinite inner product is discussed. Thereafter it will be
shown that the F‘%’ equation together with its indefinite inner product differs from other
developments in the literature based upon the use of th% &ghiation.
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